
Lectures Notes from Beg Rohu 2025

Clark Miyamoto (cm6627@nyu.edu)

June 13, 2025

2

0.1 Introduction

These are a set of lecture note from the Beg Rohu Summer School in 2025.

0.2 Request for Contributions

I know diffusion, so my notes are coherent for Stephan and Marc’s lectures. So for those
with better notes for Elena, Olivier, Jean, Yann, and Arvind, I would greatly appreciate
contributions.

0.3 List of Participants

Contents

0.1 Introduction . 2
0.2 Request for Contributions . 2
0.3 List of Participants . 2

1 Elena Agliari: Information Processing in Hebbian Networks 7
1.1 Overview . 7
1.2 A Model for Neurons . 7

1.2.1 Noiseless Dynamics . 10
1.3 Jun 9th . 10

1.3.1 Hopfield Model . 11
1.4 SK Model . 11
1.5 Things to look at . 11
1.6 Restricted Boltzmann Machine . 12

1.6.1 Training . 12
1.7 Hopfield Model . 13

2 Olivier Dauchot: Swarm Robotics as Smart Active Matter 15

3 Julia Kempe: Synthetic Data 17
3.0.1 Infinite Memory Model . 17
3.0.2 Kernel and Regression . 18

4 Jean Rémi King: Geometry of Thought 21
4.1 Overview . 21

5 Yann LeCun: Self Supervised Models 23
5.1 Overview: A Path to Advance Machine Intelligence 23

5.1.1 What is an Energy Based Model (EBM) 23
5.1.2 What is a World Model . 25
5.1.3 How do I learn more . 25

5.2 Jun 6th . 25
5.2.1 Lagrangian Mechanics . 26
5.2.2 . 26

6 Stéphane Mallat: Score Based Diffusion & Renormalization Group Flow 29
6.1 Overview . 29

6.1.1 Transport . 30
6.1.2 Outline . 30

6.2 Historical Models: Energy Based Models, GANs, Normalization Flows 30
6.2.1 Energy Based Models (EBM) . 30
6.2.2 GANs . 31
6.2.3 Normalizing Flows . 32

3

4 CONTENTS

6.3 Score Based Diffusion . 33

6.3.1 Generalization vs Memorization? . 35

6.3.2 Architecture of CNNs . 35

6.4 Wavlets . 36

6.4.1 Optimal Denoising . 36

6.4.2 Compression . 38

6.5 Wavelet Slides . 38

6.6 Renormalization Group & Hierarchies . 39

6.7 Continuous Ising, ϕ4 Model . 40

6.8 Can we use this in other things? . 40

7 Marc Mézard: Statistical Physics of Generative Diffusion 43

7.1 Overview . 43

7.2 Recall: Stochastic Processes . 43

7.2.1 Langevin Equation . 43

7.2.2 Fokker Planck . 44

7.2.3 Ornstein Uhlenbeck . 44

7.2.4 General Time and Variance . 45

7.3 Principals of Generative Diffusion . 45

7.3.1 Forward Process . 45

7.3.2 Backwards Process . 46

7.3.3 Comment on Discretization . 46

7.3.4 The Score . 46

7.3.5 Approximating the Score . 47

7.3.6 Various Scores . 47

7.4 A First Example: Gaussian Data . 48

7.5 Related Approaches i.e. ODE, Stochastic Localization, & Interpolants 50

7.5.1 Ordinary Differential Equations . 50

7.5.2 Example with Isotropic Gaussian . 50

7.5.3 Stochastic Interpolants . 51

7.5.4 Unifying Framework for Langevin, ODE, and Stochastic Interpolants . 51

7.5.5 Stochastic Localization . 52

7.6 Curie Weiss Model . 53

7.6.1 Generative Diffusion w/ Perfect Score 53

7.6.2 Speciation Transition . 54

7.7 Generalization vs Memorization in Diffusion Models 55

7.7.1 Rigorous Calculation . 56

8 Arvind Murugan: Learning without Neurons 59

8.1 Overview . 59

8.1.1 Training Molecules . 61

8.2 Expressitivity and Trainability . 62

8.2.1 Training of Molecular Networks . 62

8.2.2 Potts Model of Molecular Networks . 62

8.2.3 Place Models . 63

8.3 June 12th . 63

8.3.1 Boltzmann Machine Training: How can construct a phase-diagram how-
ever I want? . 63

CONTENTS 5

9 Etc. 65
9.1 People Presentations . 65
9.2 Q&A Sessions . 65
9.3 Acknowledgements . 66

6 CONTENTS

Chapter 1

Elena Agliari: Information Processing
in Hebbian Networks

1.1 Overview

In these lectures, we are interested in creating phase diagrams, where the macrostate is wether
the neural network learns the data distribution, as we vary relevant quantities of the network
(i.e. size dependence, architecture, etc.)

We’ll go over

1. Intro to Hebbian Networks

2. Hopfield Model

3. Restricted Boltzmann Machines and Hebbian Networks

4. Architectures

1.2 A Model for Neurons

Our story begins with a MC Oulloch (in 1943) trying to create a mathematical model for
neurons. Neurons can be effectively described as nodes on a network

• Edges of the graph physical correspond to ”axon” (which are paths which connect
neurons).

• They fire electrical signals which in-turn will choose wether or not another neuron will
fire.

Now let’s mathematize this. A system of {xi : xi ∈ {0, 1}Ni=1 neurons. They are coupled with
strengths {Ji : Ji ∈ R}Ni=1 to an output neuron y ∈ {0, 1}. The state equation of the system
is

y = Θ(U − U∗), s.t. U =
∑
i

Jixi (1.2.1)

where Θ is the heaviside function, and U∗ ∈ R is interpreted as the activation energy for the
neuron to fire.

7

8CHAPTER 1. ELENA AGLIARI: INFORMATION PROCESSING IN HEBBIAN NETWORKS

However, neurons don’t just point to one ”god” neuron y, they all point towards each other
(albeit sparsely). So our true state equation should be

xi = Θ(Ui − U∗
i), s.t. Ui =

N∑
j=1

Jijxj (1.2.2)

Ok, this is all cool, but what if we want to generlaize our model a little more? (Specifically
we’d like to recover a spin-glass system that way we can take advantage of our knowledge
from statistical physics). So a couple things

• Consider defining a random variable zi ∼ σz where E[z] = 0 and E[z] = 1.

• Instead of using binary variables x = (x1, ..., xN) ∈ {0, 1}N , what if we could use ising-
spin variables σ ∈ (σ1, ..., σN) ∈ {±1}N . We can transform between the two using

xi =
1

2
(1 + σi) (1.2.3)

Using this transformaiton, we can rewrite our state equation in-terms of σ

σ
(t+1)
i = sgn[φ

(t)
k + Tz

(t)
i], s.t. φi =

∑
j

Jijσ
(t)
i + h (1.2.4)

Definition 1 The random variable X ∼ Rad(p) is defined to have the following properties

P(x = 1) = 1− P(x = −1) = 1 + p

2
(1.2.5)

Hypothesis 1 We assume the probability distribution over pZ is symmetric. That is pZ(−z) =
pZ(z)

If we assume this hypothesis to hold, and define the following

gZ(z) ≡
∫ z

−∞
pZ(u)du = P[Z < z] (1.2.6)

We can show that probability of P[σ(t+1)
i = ±1] = gZ(±φ

(t)
i

T
).

Also some notation for the future, we’ll notate pZ(z) ≡ 1
2
[1− tanh2(z)] and therefore gZ(z) =

1
2
[1 + tanh(z)].

Definition 2 (Update / Dynamics) We define two ways to perform dynamics

• Sequential. We select i randomly, and update P[σ(t+1)
i] = g(σiφ

(t)
i /T)

• Parallel. P[σ(t+1)] =
∏

i g(σ)iφ
(t)
i /T)

, Finally, we we assume the coupling matrix is symmetry (JT = J), Jii ≥ 0 and h is stationary.
Then the Lyaponov function

L = −1

2
σTJσ − hTσ (1.2.7)

1.2. A MODEL FOR NEURONS 9

What’s nice about this function is that is always is lowered with the dynamics we’ve asserted

∆L(σ, J) ≤ 0 (1.2.8)

where ∆L is meant to be interpreted as a discrete difference in time L(t = t′+∆t′)−L(t = t′).
You can also show that L is lower bounded.

The result of all of this, if you run your update step, you can create a diagram which shows
where you end up at fix points dependent on where you start. So if data is encoded in σ̄,
and data flows to fixed points (attractors) ξ depending on initialization— we have created a
classifier!

Definition 3 (Attractor) We define the attractor ξ ∈ {±1}N , is the configuration of spins
σ where you flow to a fixed point. So ξ ∈ {{{±1}N}M is defines the set of attractors emitted
by the model.

However, to make a good classifier, we’d like to be able to tune/train our couplings J s.t.

• We can host a many attractors / stationary points

• The radius between the initalization and the attract is big enough s.t. we can find
attractors. Aka generalize.

Definition 4 (Retrivial) A definition for when the network emits attractors

• (Strong Definition). J = J(ξ) retries ξ staritng from σ.

• (Weak Definition). ξ is (δ, ϵ) stable. That is when your state enter a δ-radius ball away
from the attractor, it will forever stay within an ϵ-radius ball to the attractor.

Ok, to make our life easier, assume we know what we want our attractors to be {ξµ}Kµ=1, and
all we need to do is tune our interaction matrix J . We can use Hebb’s Rule to learn the
parameters.

Definition 5 (Hebb’s Rule) Assert Jij =
1
N

∑K
µ=1 ξ

µ
i ξ

µ
j . The 1/N is to make the rule non-

extensive in the number of spins N . We perform the update

J
(t+1)
ij ← J

(t)
ij +

1

N
ξiξj (1.2.9)

We note that the time scale of the couplings J is drastically different from the time scale of
the neurons x.

In the case the number of attractors is K = 1.

L(σ) =
1

2N

∑
ij

σiσjξiξj (1.2.10)

= − 1

2N

∑
ij

σ̃iσ̃j ≥ −
N

2
(1.2.11)

where the transformation we did was σi → σ̃iξi. So we’ve recovered a Potts Model!

10CHAPTER 1. ELENA AGLIARI: INFORMATION PROCESSING IN HEBBIAN NETWORKS

Definition 6 (Motts Magnetization) We define an overlap parameter

mµ ≡
1

N

∑
i

σ̃i =
1

N

∑
i

σiξ
µ
i ∈ [−1,+1] (1.2.12)

What is nice about this parameter is that it allows us to access the quality of retrivial. That
is if your states σ actually go to the attractor ξ, then m1 → +1.

Theorem 1 (Kohonen’s Projector Rule) If J is s.t.
∑

j Jijξ
µ
j = λξµi for λ > 0 for all i.

Then

sgn(Jξµ) = sgn(λξµ) = ξµ (1.2.13)

This means that ξ is a fixed point of the dynamics.

1.2.1 Noiseless Dynamics

Consider the following system

ξ1φi(ξ
1) > 0 (1.2.14)

If we expand this quantity this

ξ1i φi(ξ
1) =

ξ1i
N

N∑
j=1,j ̸=i

K∑
µ

ξµi ξ
µ
j ξ

1
j =

N − 1

N
+

1

N

∑
µ>1

∑
j=1,j ̸=i

ξ1i ξ
µ
i ξ

µ
j ξ

1
j (1.2.15)

We can see this leads to a signal-to-noise decomposition...

1.3 Jun 9th

Let σ = {±1}N bet a set of neurons, ξµ ∈ {±1}N be the set of memories µ = 1, ..., K, and

J = 1
N
ξ · ξT and Jij =

1
N

∑
µ ξ

µ
i ξ

µ
j , with the update step

σ(t+1) = sgn(φ(t)) (1.3.1)

φ
(t)
i ≡ φi(σ

(t)) =
∑
j

Jijσ
(t)
j (1.3.2)

The question we’ll be answering today is σ = ξµ a stable solution? For simplicity let’s assume
K = 1, so µ = 1 is our target configuraton

ξ1i = sgn(
∑
k

Jikξ
1
k) (1.3.3)

ξ1i
∑
j ̸=i

Jijξ
1
j =

N − 1

N︸ ︷︷ ︸
µ=1, Term S

+
1

N

∑
j ̸=i

∑
µ>1, Term R

ξ1i ξ
1
j ξ
µ
i ξ

µ
j︸ ︷︷ ︸

µ>1

(1.3.4)

Note the second term is
√

(K − 1)(N − 1)/N ≈
√
K/N . So as long as K/N →N→∞ 0, then

the first term will be greater than the absolute value fo the second term.

1.4. SK MODEL 11

Consider an initial configuration of the neurons σ(0) = ξµ⊙χµ where χµi ∼ Rad(p) (mean-
ing P[χµi = ±1] = (1+p)/2) and ⊙ is the Hammard product (element wise multiplication).
This is supposed to be interpreted as a χ perturbation away from the memory ξµ.

Consider σ(0) = sgn(ξ1 + ξ2 + ξ3). You can show it is also stable under K/N → 0.

In General σ(0) = sgn(
∑L

µ=1 ξ
µ) where L is odd is stable under K/N → 0.

So we’ve seen that K/N is crucial to determining stability in the system. So let’s give it a
name

Definition 7 (Load) We define the load quantity

α ≡ lim
n→∞

K

N
(1.3.5)

When

• α = 0, is low load.

• α > 0 is high-load

1.3.1 Hopfield Model

Consider the Hamiltonian

HN(σ; J) = −
1

N

∑
i<j

Jijσiσj −
∑
i

hiσi (1.3.6)

H(σ; J) = − 1

N

∑
i<j

∑
µ

ξµi ξ
µ
j σiσj −

∑
µ

∑
i

ξµi hiσi (1.3.7)

where ξµi ∼ Rad(0). We also introduce some notation ω()̇ =
∑

σ(·)PN(σ, ξ), E[·] =
∑

ξ(·),
and ⟨·⟩N = EωN(·). We also denote hte Mattis Magnetization as mµ ≡ 1

N

∑
i ξ

µ
i σi ∈ [−1,+1].

So now going back to H, we can rewrite it int this notation as

HN = − 1

2N

∑
µ

NmµNmµ +
1

2

∑
τ,µ

(1)−
∑
µ

mµNhµ (1.3.8)

= −N
2
m2 +

K

2
−NhTm (1.3.9)

Now our goal is to compute ⟨m⟩. We can accomplish this by computing the free energy
fN(ξ) =

1
Nβ

logZn(ξ) and use it as the moment generating function.

1.4 SK Model

1.5 Things to look at

Introductory

• Cooolen, Kuhm Sollich. Theory of Neural Information Processing Systems

• Bovier. Statistical Mechanics of Disordered Systems.

12CHAPTER 1. ELENA AGLIARI: INFORMATION PROCESSING IN HEBBIAN NETWORKS

1.6 Restricted Boltzmann Machine

Consider the model

pβ(v, h;w, θ) =
e−βH(v,h;w,θ)

Z
(1.6.1)

where H(v, h;w, θ) = −
∑
i,µ

wi,µvihµ −
∑
i

viθi −
∑
µ

hµθµ (1.6.2)

where i = 1, ..., N (number of visible spins), and µ = 1, ..., K (number of hidden spins). This
object can be used to learn a target probability distribution q(x, y), both in a supervised &
non supervised case.

Supervised Case

Our setup is (x(i), y)ni=1, where x
(i) ∈ [0, 1]d is your features, and y ∈ Y is your label / class.

For MNIST, d = 28× 28 and Y = {0, ..., 9}.
This means in the RBM, v ∈ {±1}N where N = 28 ∗ 28 = 784, and h ∈ {±1}k where

k = 10.

Unsupervised Case

In this case v ∈ {±1}N and h are latent variables.

1.6.1 Training

To fit the RBM to the target probability distribution, we can minimize the KL divegence
between them

DKL(p||q) =
∑
v,h

q(v, h) log
q(v, h)

p(v, h)
(1.6.3)

From here we evaluate this w.r.t. the hidden spins
∑

h, and what you’ll see

∆Wiµ = −ϵ∂DKL

∂Wiµ

(1.6.4)

∆θiµ = −ϵ∂DKL

∂θiµ
(1.6.5)

So computing out derivatives on DKL w.r.t. the parameters λ = (W, θ)

∂

∂λ
DKL(q||p) =

β

log(2)
{Eq[∂λH]− Ep[∂λH]} (1.6.6)

=⇒

{
∆Wiµ = ϵβ

log 2
{Eq[vihµ]− Ep[vihµ]}

∆θi = ϵβ
log 2
{Eq[vi]− Ep[vi]}

(1.6.7)

However these expectations are unaccessible. We can get around this by replacing

Eq → Eq̄ (1.6.8)

Ep → MCMC (1.6.9)

where q̄ is the empirical distribution of q.

1.7. HOPFIELD MODEL 13

Contrastive Divergence

Another way to get around having to compute Ep is to use Contrastive Diveregnece

DKL(q̄||p)−DKL(pn||p) (1.6.10)

where pn is the distribution of your data obtained by running the Markov Chain for n steps.

1.7 Hopfield Model

Recall, we assumed that {ξµ}kµ=1 is perfectly known, however in practice this is not the case.

To model this, we can instead use the dataset {ξµ,A}µ=1,...,k;A=1,...,n where ξµ,A = ξµ ⊙ χµ,A

where χµ,Ai ∼ Rad(r) (which means you randomly flip enties of the data). r ∈ [0, 1] is a
measure of the quality of the dataset, when r = 0 you have a completely scrambled dataset
and r = 1 means you have a perfect dataset.

Supervised

In this case, we assume there is a teacher which has the empricial averag of the memories
ξ̄µi ≡ 1

n

∑n
i=1 ξ

µ,A
i . We then use this to train our couplings

Jsupij =
1

n

∑
µ

ξ̄µi ξ
µ
j =

1

nm2

∑
µ

∑
A,B

ξµAi ξµBj (1.7.1)

Unsupervised

In the unsupervised cas,e we can do this instead.

Jsupij =
1

nm

∑
µ,A

ξµAi ξµAj (1.7.2)

14CHAPTER 1. ELENA AGLIARI: INFORMATION PROCESSING IN HEBBIAN NETWORKS

Chapter 2

Olivier Dauchot: Swarm Robotics as
Smart Active Matter

15

16CHAPTER 2. OLIVIER DAUCHOT: SWARMROBOTICS AS SMART ACTIVEMATTER

Chapter 3

Julia Kempe: Synthetic Data

Kempe’s talk is titled ”Synthetic Data: The Good, The Bad, The Ugly (and The Math)”. I
like the data.

The premise is we are at the point where a fair amount of data on the internet has been
created via AI. And we all know about model collapse (that is if you train an LLM on data
generated by an ML program will eventually lead to models performing horribly). This is not
so surprising because if you sample a gaussian, and fit it, then resample, on and on— you’ll
find the Gaussian’s variance will go down— regression to the mean. So how can we model &
understand this phenomena!
So some causes

1. Finite sample error

2. Expressitivity error (model under capacity)

3. Approximation error (due to optimization bias, etc.)

4. Inteference error.

Kempe likes to study these from the perspective of scaling laws.

3.0.1 Infinite Memory Model

This was published by Hutler in 2022.

Consider a dataset DT = {(it, f(it))}Tt=1 ⊂ D. And we have a memory model

A(i,DT) =

{
f(i) if i = ıe s.t. ∃1 ≤ e ≤ T

⊥ otherwise
(3.0.1)

what we notice is that p(i) ∼ i−β. There’s a test error

Etest(T) = P(i ̸= ie : i ≤ ℓ ≤ T)) (3.0.2)

=
∞∑
i=1

p(i)(1− p(i))T (3.0.3)

≃
∞∑
i=1

i−β(1− i−β)T ≃
∑

i−βe
−(i−β)T

(3.0.4)

17

18 CHAPTER 3. JULIA KEMPE: SYNTHETIC DATA

Let c = 1− 1/β. Then

= T c
∑
i

i−βe−(i−β)T ≍ Γ(c, Tk−β)− Γ(c, T) = O(1) (3.0.5)

Ok... Now let’s see the behavior as we retrain based off of the previous model. That is our
dataset will now be DT = {(i,AT0(i))}i, so AT0(i) is like ChatGPT trained on very clean
internet data, and this current dataset is the internet 1 year after ChatGPT.
Notice that i appears T0i

−β times in DT0 . So in the limit T0i
−β ≪ 1. Then if i > k, AT0

hasn’t seen it.

A′
T0,T

(i) =

{
f(i) if i ≤ k and i = ie 1 ≤ ℓ ≤ T

⊥ otherwise
(3.0.6)

The test error now chnage

Etest = P(i > k : 1 ≤ ℓ ≤ T) =
k∑
i=1

p(i)(1− p(i))T +
∑
i>k

p(i) ≍ k−(p−1) = k−cβ (3.0.7)

If we redo this calculation in the limit 1≪ T < kβ. Then Γ(c, Tk−β) ∼ O(1), so

Etest ≍ k−βc + T−c ≍ TC (3.0.8)

Another case T ≤ k2, then

Etest ≍ k−βc + T−C ≍ k−βc (3.0.9)

Basically, you redo this calculation over and over, and we see this scaling law apppear up
everywhere. SO the test error is limited by these bounds.

3.0.2 Kernel and Regression

Consider your inputs x ∼ N (0,Σ) ∈ RD and they’re noisy ϵ ∼ N (0, σ2) ∈ R and the label
y = xTW0 + ϵ. Lets’ start by assumping d < T , we have less data than parameters.

Etest = Ex,ϵ||xT ŵ − y||2−σ2 (3.0.10)

The best fit ŵ is via oridnary least squares between X and Y . Meaning

ŵ = (XT
0 X0)

−1XT
0 Y0 (3.0.11)

= (XT
0 X0)

−1XT
0 (X0w0 + E0) Y0 = X0w0 + E0 (Original fit) (3.0.12)

= w0 +XT
0 E0 (3.0.13)

With this model, the test error we get is

Etot = ||(ŵ − w0)||2 (3.0.14)

= Eϵ||XT
0 E0||2 (3.0.15)

= σ2E Tr(X0(X
T
0 X0)

−2XT
0) (3.0.16)

= σ2E Tr(XT
0 X0)

−1 (3.0.17)

Recall that X0 ∼ N (0,Σ), we can use some random matrix theory to compute this

= σ2 d

T − d− 1
∼ σ2d

T
(3.0.18)

19

Model Collapse

So we did this just on one weight. So what happens if we do this recurisvely, over and over.
Let’s look at how the test error at the i’th iteration changes depending on the ground truth
w0

E
(i)
test = ||ŵi − w0||2 (3.0.19)

(3.0.20)

Let’s start at i = 2

E
(2)
test = ||ŵ2 − w0||2= ||ŵ2 − ŵ1︸ ︷︷ ︸

XT
1 E1

+ ŵ1 − w0︸ ︷︷ ︸
XT

0 E0

||2 (3.0.21)

≍ dϵ2

T
+
dϵ2

T0
(3.0.22)

Ok if we do this n times

E
(n)
test =

dϵ2

T
+
ndϵ2

T0
(3.0.23)

20 CHAPTER 3. JULIA KEMPE: SYNTHETIC DATA

Chapter 4

Jean Rémi King: Geometry of
Thought

4.1 Overview

Jean Rémi King is a research at Meta Brain. In his talk he’ll be going over:

1. The discovery of neural codes.

2. Evidence of convergence.

3. Coding compositional structures.

As an overview, the brain is obviously why humans are able to reason about the world. So
the question becomes what are the exact mechanisms which allow for reasoning? In King’s
research they often use an MRI and to image the brain while a participants is being shown
stimuli. Experimentaly, you can show that (in a spatial sense) the brain reacting to stimuli
respects locality & hierarchy: that words go here and faces go there, and orientations of faces
are within the faces section, and slightly to the side is if the face is smiling or not.

How does machine learning come into play? Well obviously use ML to help us decode what
the brain is doing (so you can perform a bayesian inference on, given brain activity, ask what
is this person looking at?). If you want to see these visualizations, see Ozcelik & van Rullen
(2022), and then say wow.

Definition 8 (Representation (according to King)) A representation is linearly read-
able information. That is if there is linear map f which Ŷ = f(X) approximates Y quite
well, then X is a representation of Y .

A very interesting application of keeping representations restricted to linear maps is attmempt-
ing to perform linear regression from brain activity to various encoders (i.e. CNN, word2vec,
and ChatGPT). You can do an experiment where you map how these perform as a function
of time after exposed to a word and the location in the brain, and you recover what you
expect...

21

22 CHAPTER 4. JEAN RÉMI KING: GEOMETRY OF THOUGHT

Chapter 5

Yann LeCun: Self Supervised Models

5.1 Overview: A Path to Advance Machine Intelligence

We begin with a question: why do we want to build systems that are as smart as humans?
The answer is trivial lol. Obviously if they’re too smart, we will live in dystopia. So the
question becomes how do we construct machines with human-level intelligence? By this, he
means algorithms which can generalize their knowledge to solve new problems in zeros shot.
Yann believes this can be answered by self-supervised learning.
He motivates his answer by noting a few things that occur in nature

• Humans & animals seem to do something quite close to self-supervised. And they are
quite good at zero-shot tasks.

– I.e. look at the amount of visual data that a baby sees in it’s first 4 years of life,
compared to the amount of data to train a SOTA LLM. They’re comparable. But
the baby can do zero shot tasks, LLMS are more good at doing lookup.

5.1.1 What is an Energy Based Model (EBM)

Traditionally, we preform inference via a feedforward model. That is you run

ŷ = (f1 ◦ f2 ◦ ... ◦ fn)(x) (5.1.1)

However, you are limited by the architecture, for any inference (simple or complex) you are
set to do n computations. I.e. why should asking an LLM ”does 2+2 =4?” use the same
amount of computation as ”is P=NP?”.

This leads us to another method, which is performing inference via optimization.

ŷ = argminy∈Yf(x, y) (5.1.2)

Interestingly, you can also have multiple answers as well. For training such models, you make
it learn the fθ (the energy function). You train this function s.t. f takes low values on
the training data, and it takes higher values away from the training data. Obviously we have
assumed some sort of locality, that is |∇f |< Constant– every model makes some assumptions,
it more up to you. However, because inferences require an optimization, you kinda want some
notion of locality, it’ll makes the optimization much easier.

23

24 CHAPTER 5. YANN LECUN: SELF SUPERVISED MODELS

What is the difference between energy-based models and probabilistic models? Well if
you assume a Gibbs measure, and set the Hamiltonian to the energy function, you get

p(y|x) = e−βf(x,y)

Z
(5.1.3)

You can also add latent parameters. Consider the energy function E(x, y, z) where z relates
to hyper parameters of the model, etc. We can do minz∈Z E(x, y, z) are then use the resulting
quantity as our new energy function.

Training EBMs

He shows how to train EBMs by walking through an Ising model example.

A naive method is to just perform gradient descent

E(y) = −
∑
ij

wijyiyj (5.1.4)

∂E

∂wij
= −yiyj (5.1.5)

∴ wij ← wij + ϵ(yiyj) Backprop Step (5.1.6)

However this is dumb, you only low energy at the specific y’s. You don’t instill any locality.
Instead do contrastive methods

wij ← wij + ϵ(yiyj − ŷiŷj) (5.1.7)

In this case we sample ŷi ∈ Y , and then move the energy function f near them as well.. This
allows the energy function to smoothly change. Obviously this particular method is crude,
but you can implement smarter ways to do this... In summary, a contrastive method is one
which not only lowers the energy function at the data point, but also lowers near by points
as well...

The other methods are architectural, that is you choose an architecture which is able to
automatically do contrastive learning (i.e. bottleneck auto-encoders, transformers, etc.). And
finally regularized optimizations.

This is explained throughly in https://arxiv.org/pdf/2101.03288

Loss for Contrastive Learning

Going back to contrastive learning, let’s see how to construct a loss. Given the EBM f(x, y).
We want to lower the energy at target point (x, y), and increase the energy at (x̂, ŷ).
You can consider triplet loss L

L((x, y), (x, ŷ)) = f(x, y) + [m(y, ŷ)− f(x, ŷ)] (5.1.8)

It keeps similar labels together, and pushes dis-similar images away, as endowed by m.
If you want to model probability distributions, can also choose the loss to be the nega-

tive loglikelihood. (This naming makes sense if you choose the Gibbs distribution p(y|x) =
exp(−βf(x, y))/Z).

L((x, y), (x, ŷ)) = fθ(x, y) +
1

β
log

∫
Y
e−βfθ(x,y)dy (5.1.9)

∇θL = ∇θf − E[∇θfθ] ≃ ∇θf(x, y)−∇θf(x, ŷ) (5.1.10)

https://arxiv.org/pdf/2101.03288

5.2. JUN 6TH 25

Diffusion Models as Contrastive Methods

5.1.2 What is a World Model

In this quest for better intelligence, we have motivated that living creates a world model
inside their head. So the next-generation of machine intelligence should also copy the same.
Let’s walk through a simple example. We can see the benefit of this approach when trying

to create an agent which interacts with the world. Consider the following situation, you have
an encoder E : Observations of World→ St a computational model of the world which takes
in observations and actions W : S × Actions → S and attempts to predict what the next
state of the world is. So an example of inference is

xt+1 = E−1(W (xt, q)) (5.1.11)

where xt, xt+1 ∈ S and q ∈ Actions. You can see this is like a optimal control problem, but
we don’t solve Hamilton Jacobi Equation, but instead learn the optimal result based on data.

5.1.3 How do I learn more

Read the following papers

1. Opinion piece by Yann. https://openreview.net/forum?id=BZ5a1r-kVsf

2. SimCLR

3. (Hierarchical) JEPA

4. How to train your Energy Based Model

5. VicReg

6. MCR2

7. MMCR

5.2 Jun 6th

Today we start with a simple example in the energy-based model framework. Here we set the
energy function as the cost between label and predicted label.

E(y, z) = C(y,Dec(z)) (5.2.1)

where C(a, b) = ||a− b||2 is the cost, and Dec(z) =Wz is a linear decoder. You can find the
”free energy” of y by minimizing over z

F (y) = min
z
E(y, z) (5.2.2)

Here Yann walks us through a simple calculation of the information you gain from see-
ing the true distribution compared to your prior. In general, that quantity is the KL
divergence (see https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler divergence#
Bayesian updating). In this case your prior is p and your true distribution is q, and they
go into the KL divergence as KL(q, p).
He does this because we want to minimize the information content of the latent variable.

If you believe in data-science epistomology, you’d like your model to be as unbiased as
possible, so you’d like to use this metric to make your prior as uninformed as possible.

https://openreview.net/forum?id=BZ5a1r-kVsf
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#Bayesian_updating
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#Bayesian_updating

26 CHAPTER 5. YANN LECUN: SELF SUPERVISED MODELS

We can construct a loss function

L(q, y, w) =
∫
z

q(z|y)Ew(y, z) +
1

β

∫
z

q(z|y) log q(z|y)
q(z)

(5.2.3)

argminqL =
e−βEw(y,z)

Z
(5.2.4)

5.2.1 Lagrangian Mechanics

Consider a feedforward network f(x) = (fT ◦ ... ◦ f0)(x). We denote the internal activations
as z = {z0, ..., zT},There is a cost function

L(z, w, λ, y) = C(y, zT) +
T∑
k=0

λk(zk+1 − fk(zk;Wk) (5.2.5)

where λk are lagrange multiplier, Wk is the weights associated with fk. The backprop rules
are

∂L

∂λk
= 0 =⇒ zk+1 = fk(zk;Wk) (5.2.6)

∂L

∂zk
= 0 =⇒ λk =

∂fk(zk;Wk)

∂zk
λk+1 (5.2.7)

∂L

∂Wk

= 0 =⇒ ∂C

∂Wk

+
∂fk(zk;Wk)

∂Wk

(5.2.8)

So basically, he wanted to show that backprop constructs a canonical momentum? [I’m sorry
Yann I don’t see it, I’ll have to go over this again. Which one is canonical position and
momentum? I think it’s z is the position, and λ is the momentum (as it is defined via a z
derivative). How do they define dual spaces?]

5.2.2

Consider the model sa = Enc(a) and a transformation ŝy = f(sx). Also consider we have a
measure of information of the encoders I(sx), I(sy). We construct a loss function

L = C(ŝy, sy) + λxI(sx) + λyI(sy) (5.2.9)

Yann spends some time to talk about different measures of information of the encoder.

1. You can assume I(s) ∈ Rd, all dimensions are statistical independent. And here if you
compute the entropy, it’ll be an overestimate.

• We can get around this by adding a regularizer in our loss function s.t. our encoder
whitens the data / make it as independent as possible.

•

2. We can att

5.2. JUN 6TH 27

hi

28 CHAPTER 5. YANN LECUN: SELF SUPERVISED MODELS

Chapter 6

Stéphane Mallat: Score Based
Diffusion & Renormalization Group
Flow

6.1 Overview

We’ll be going from score-diffusion and eventually make our way to the renormalization group.

The setup is you’re given a set of input data {xi : xi ∈ Rd}i≤n which (we believe) to be
sampled from a distribution p(x). Your objective is to reconstruct this probability distribu-
tion.

Doing this problem in the physics context, the canonical example will be attempting to
recreate samples from a Ising / ϕ4 model. Some more advanced problems are turbulence,
cosmology, metrology, and climatology. Apart from physics, you can also generate new image
(i.e. conditional generation), and use it to solve inverse problems.

As you start to think more about this problem, it might seem hopeless to learn p(x). This is
because the problem suffers from the curse of dimensionality. A crude way to calculate
this is to first assume p(x) is Lipschifts

Definition 9 (Lipschifts) That is |p(x)− p(x′)|≤ K ||x− x′||︸ ︷︷ ︸
ϵ∈[0,1]d

This means you’ll need ∼ Cϵ−d amount of data... You can see you’re screwed.

We can start to tackle this problem by making a key assumption, factorize the distribution

p(x) =
∏
k

pk(x) =⇒ log p(x) =
∑
k

log pk(x) (6.1.1)

Two problems now emerge

1. How do we choosing this factorization?

2. How do we prevent it from just simply memorizing a distribution?

The first method is to assume p(x) is a empirical distribution, by this I mean p(x) = 1
n

∑n
i=1 δxi

(which are get all the observed data, and draw it uniformly).

29

30CHAPTER 6. STÉPHANEMALLAT: SCORE BASED DIFFUSION & RENORMALIZATIONGROUP FLOW

6.1.1 Transport

By transport, we mean constructing a new function pt(x) which is a probability distribution
∀t, with boundary conditions pt=0(x) = p(x) and pt=T (x) = pgaussian(x). So basically, can we
find a new probability distribution which moves from complex things to NOT complex things.

There is a forward process, which is some noising operator. And there is a inverse pro-
cess, which undo’s the noise (usually involves the ML algorithm). What we’ll end up seeing
is that these processes ends up being equivalent to RG discovered by Kadanoff & Wilson.

A particular ansatz we can take is

p(x) = p(xT)︸ ︷︷ ︸
Gaussian

1∏
t=T+1

p(xt/xt−1) (6.1.2)

6.1.2 Outline

1. Energy Based Models, GANs, and Normalizing Flows.

2. Score based diffusion, Fokker Planck, and denoising

3. Generalization and memorization.

4. Renormalization Group

5. Particular models: simple models based on wavelet / scattering transforms.

6.2 Historical Models: Energy Based Models, GANs,

Normalization Flows

6.2.1 Energy Based Models (EBM)

When we say we have an energy based model, we have a probability distribution over x =
(x1, ..., xd) which takes the form

pθ(x) =
e−Uθ(x)

Zθ
, s.t. Zθ =

∫
dx e−Uθ(x) (6.2.1)

Example 1 An example model is a perturbation away from a Gaussian

Uθ(x) = xTΣ−1
θ x+ θ

∑
i

V (xi) (6.2.2)

In physics the first one is the kinetic energy term, and the second is the potential energy term.
You could start by making Uθ a neural network.

Example 2 Another example model is the exponential family

Uθ(x) = ⟨θ,Φ(x)⟩ (6.2.3)

Notice, this is the Boltzmann distribution in physics, where θ ↔ β (inverse temperature) and
Φ(x)↔ H(x) (Hamiltonian)

6.2. HISTORICALMODELS: ENERGY BASEDMODELS, GANS, NORMALIZATION FLOWS31

Likelihood

Definition 10 (Likelihood) The negative likelihood ℓ(θ) of probability distribution p

ℓ(θ) = −Ex∼plog pθ(x) = KL(p||pθ) +H[p] (6.2.4)

where KL is the Kullback-Lieber divergence, and H is the entropy.

Our objective will be choose θ s.t. we minimize the negative likelihood

θ∗ = argminθ ℓ(θ) (6.2.5)

To minimize this, we end up needing to calculate gradients of the likelihood. In the case
of energy based models, that would mean we have to calculate the normalization ∇θ logZθ,
which in practice is quite hard. However, we can massage the problem into

∇θℓ(θ) = Ex∼p[∇θU(x)] + logZθ (6.2.6)

= Ex∼p[∇θUθ(x)]− Ex∼pθ [∇θUθ(x)] (6.2.7)

So now the problem becomes figuring out how to compute Ex∼pθ which involves spending
time to construct a Markov Chain Monte Carlo method.

6.2.2 GANs

GAN stands for Generative Adversarial Network, the original paper is by Goodfellow &
Bengio (2014). What you do is you construct two neural networks GθG and DθD and make
their tasks adversarial to one another. G’s task is to generate images from noise z ∼ N (0, 1),
and D’s task is to figure out which image was real vs generated. So to recap, G : z → Images
and D : Images→ [0, 1], where your goal is that

Dideal(x) =

{
1 if x is a real image

0 if x is a fake image
(6.2.8)

The loss function is

L(θD, θG) = Ex∼pdata [logD(x)] + Ez∼Gaussian[log(1−D(G(z))] (6.2.9)

What ends up happening in practice is that GANs almost always memorize the data instead
of learning to gneerate. Another way of saying this is this is a difficult nash-equilibrium to
obtain, or you see mode collapse. This is why people used them for image generation, and
couldn’t use them for physics data...

A small aside... If you successfully find the global minimizer/maximizer

Lemma 1 The optimal discriminator ends up being

D∗ = argmaxD L(D,G) (6.2.10)

=
pdata(x)

pdata(x) + pG(x)
(6.2.11)

Theorem 2

min
G

max
D
L(D,G) ⇐⇒ pG = pdata (6.2.12)

Both are theoretical results, so they don’t consider using finite number of samples.

32CHAPTER 6. STÉPHANEMALLAT: SCORE BASED DIFFUSION & RENORMALIZATIONGROUP FLOW

Conditional GANs

What if you want to condition your learned distribution on some variables (i.e. text to image,
or in-painting). Your loss function will be

L(D,G) = Epdata [logD(x|y)] + Ez∼pdata [log(1−D(G(x|y)))] (6.2.13)

6.2.3 Normalizing Flows

In this problem, we have an easy to sample distribution pz (which is Gaussian), and difficult
to sample distribution px (which is the target distribution). The way we’ll do transport is to
learn a diffeomorphism Tθ, and now we can do change of basis between the two

px(x) = pz(T (x)) detJT (x) (6.2.14)

where JT is the Jacobian of T .
The likelihood ends up being

ℓ(θ) = −Ex∼p[log pz(Tθ(x))]− Ex∼p[log|det−JTθ |] (6.2.15)

You may be thinking that the normalization constant (2nd term) looks quite scary... However
with the right ansatz, it’s analytically tractable. Here’s how to do it.
First, break the diffeomorphism into smaller diffeomorophisms T−1

θ = T−1
1 ...T−1

k . So the
infal term becomes log|detJTθ(x)|=

∑
i log|detJTi(xi)|.

Second, we can use block inverse formula to get a nice closed form expression. To keep
track of the block inverse, let’s split up x ∈ Rd = (x0, x1) ∈ Rd0 × Rd1

Tθ(x) = (x0, e
Sθ(x0) ⊙ x1 + tθ(x0)) (6.2.16)

T−1
θ (z) = (z0, (z1 − tθ(z0))⊙ e−Sθ(z0) (6.2.17)

where ⊙ denotes the Hadamar product, and z = (z0, z1). You can now show that the log det
term picks up a nice expression

=⇒ log|detJTθ(x)|=
d∑
i=1

sθ(x0) (6.2.18)

Finally we have our likelihood

ℓ(θ) = −Ex∼p[log pz(Tθ(x))]−
d∑
i=1

Ex∼p[sθ(x0)] (6.2.19)

Continuous Flow

Consider the Neural ODE

dxt
dt

= vθ(xt, t) (Continuous) (6.2.20)

xt+ϵ = xt + ϵ vθ(xt, t) (Naive Discretization) (6.2.21)

where vθ : Rd × [0, 1] → Rd is a residual (skipped connections) neural network, which is
assumed to be Lipshifts.

6.3. SCORE BASED DIFFUSION 33

However, what if we want to stop thinking about transporting just particles, but rather
transporting probability distribution mass? Recall the Liouville Equation

∂pt
∂t

= −∇ · (vt pt) (6.2.22)

= − vt · ∇pt︸ ︷︷ ︸
Convection

− pt(∇ · vt)︸ ︷︷ ︸
compression / dilation

(6.2.23)

Why would you want to do this? In metrology, it’s quite difficult to make a point estimate
of the future (due to chaoticity of fluid dynamics), so instead what if we make a probabilistic
inference! This frame work more well posed!

6.3 Score Based Diffusion

If you want to add diffusion, you recover the Fokker Planck Equation

∂pt
∂t

= −∇ · (pt(x)vt)−∆

(
1

2
σ2(x)pt(x)

)
⇐⇒ dxt = vt(xt)dt+ σdWt (6.3.1)

where ∆ is the Laplacian operator, where we interpret Law(xt) = pt.

These ideas were developed by Physicists Reckstein & Ganguli at Stanford in 2015. It
took a whole 5 years within the same university to make its way to the CS department
where Song & Enman published their seminal paper.

However this has been thought about from a signal processing perspective by Zhadoki &
Semaicelli, and Horr & et al.

Now we can finally begin Score Based Diffusion!

Orstein Ulhrbeck SDE

Consider the stochastic differential equation

dxt = −κxtdt+ σdWt (6.3.2)

To solve it, perform the change of variable

yt = eκtxt (6.3.3)

dyt = eκt(−κxtdt+ σdWt) + κeκtxtdt = eκtσdWt (6.3.4)

This yields

xt = e−κtx0 + σ

√
1− e−2κt

2κ
z (6.3.5)

where z ∼ N(0, I). Inspecting the limiting cases of our solution, xt=0 = x0 and xt→+∞ =
σ

2
√
2κ
z. So this is a process is a linear interpolation between our input x0 and white noise

z.

34CHAPTER 6. STÉPHANEMALLAT: SCORE BASED DIFFUSION & RENORMALIZATIONGROUP FLOW

Consider the κ = 1 Orstein Ulhbreck SDE.

Moving to the distribution picture, we can see

pt = (eκtp(·eκt)) ∗ gσ (6.3.6)

where gσ = N (0, 1 − e−2κt). We can also see this forms a semi-group, we don’t get an
inverse for free...

Another way to see this is to Fourier transform. Generically if you have h = f ∗ g,
then ĥ = f̂ ĝ. In our case ĝ(ω) ∼ e−(1−e−2κt)||ω||2/2. You can see this expression explodes
as time goes on

Denoising

Now our task is to denoise the OU process. For notation, let’s use yt = xT−t and qt = pT−t. We
can plug our qt into the Fokker Planck (6.3.1), and derive a time evolution on the distribution
for the reverse process

∂pt
∂t

+∇ · (−ptxt)−∆pt = 0 Forward in time (6.3.7)

=⇒ ∂qt
∂t

+∇ · (qtyt) + ∆qt = 0 Backwards in time (6.3.8)

Notice your have inverse diffusion, which is completely unstable. Show how can we rewrite
this to become more stable? Notice the trick

∆qt = ∇ · (qt∇ log qt︸ ︷︷ ︸
score

) (6.3.9)

We finally get

∂qt
∂t

+∇ · (qtyt − (1 + α)qt∇ log pt)− α∆qt = 0 (6.3.10)

dyt = [yt + (1 + α)∇ log qt] +
√
2α dWt (6.3.11)

We now have a generic way to talk about the reverse-time process!

Denoising OU

We have the κ = 1 OU,

xt = e−tx+
√
1− e−2tz (6.3.12)

Taking the coordinate change x̃t = etxt , you now find at each point in time, you observe yt

yt = x+
√
e2t − 1z (6.3.13)

Recall we are attempting to denoise this process. In signal processing, your trying to minimize
the mean square error

Ex,z[||x̂(yt)− x||2] (6.3.14)

So given an observed noisy input yt, can we construct a x̂ (which takes in yt) and yields x.
We can use Tweety’s Formula to construct the optimal denoiser

6.3. SCORE BASED DIFFUSION 35

Theorem 3 Finding the minimum of

Ex,z[||x̂(yt)− x||2] (6.3.15)

Ends up being

x̂(xσ) = E[x|xσ] = xσ + σ2∇xσ log pσ(xσ) (6.3.16)

Proof:

pσ(xσ) =

∫
p(xσ|x)p(x)dx (6.3.17)

∇pσ(xσ) =
∫
gσ(xσ − x)p(x)dx Due to solution of OU (6.3.18)

=
1

σ2

∫
(xσ − x)gσ(xσ − x)p(x)dx (6.3.19)

σ2∇pσ(xσ)
pσ(xσ)

=

∫
(−xσ + x)pσ(x|xσ)dx p(x)/pσ(xσ) = pσ(x|xσ) (6.3.20)

= −xσ + x̂(xσ) (6.3.21)

where gσ(xσ − x) = Cσe
−||xσ−x||2/2σ2

is a Gaussian distribution. You can now see that the
score naturally arises in denoising problems.

As a machine learning person, once you see, ”minimize square error”, you should just plug that
into a neural network and let it rip. So you should try to minθ ℓ(θ) = minθ Ex,z[||x̂θ(xσ)−x||2],
and then by Tweedy’s formula, at inference time you perform x̂θ(x)−x

σ2 = ∇xσ log pσ(xσ)

Example of Denoising Gaussian

Consider the distribution pσ(x) =
e−Uσ(x)

Zσ
, which means the score is ∇x log pσ(x) = −∇xUσ(x).

pσ is Gaussian when Uσ(x) =
1
2
xTC−1x. In this case let’s choose a factorization Cσ = C+σ2I.

Using Tweedy’s Formula, our optimal denoiser (that is x̂(xσ) ≈ x) is given by

x̂(σ) = [I− (C + σ2I)−1σ]xσ (6.3.22)

= (C + σ2I)−1(C + σ2I− σ2I)x̂)σ (6.3.23)

= (C + σ2I)−1Cxσ (6.3.24)

So in this case, the optimal denoiser is found via a linear regression!

6.3.1 Generalization vs Memorization?

We want to ask the question does the neural network actually find a score which generalizes
beyond the training data? He explains a couple interesting tests https://arxiv.org/abs/2310.
02557

6.3.2 Architecture of CNNs

In a lot of these problems, CNNs (specifically UNets) end up being the more successful ar-
chitectures. So perhaps we should spend some time to deconstrucitng them.

https://arxiv.org/abs/2310.02557
https://arxiv.org/abs/2310.02557

36CHAPTER 6. STÉPHANEMALLAT: SCORE BASED DIFFUSION & RENORMALIZATIONGROUP FLOW

Convolutional Operator

A convolutional operator (in ML), takes an image (Length, Width, Channels)→ (Length’, Width’, Channels’).
Over pixel space (Length, Width) it applies a convolution, over channel space we apply a lin-
ear transformation. The ℓ’th nodes are given by

xℓ+1(i, c
′) = ρ

 ∑
c∈Channels

∑
τ∈{1,2}

W (τ, c, c′)xℓ(i− τ, c)]

+ b (6.3.25)

where ρ is your activation function, b is your bias. The
∑

c∈Channels is the linear transformation
between channel, and the

∑
τ∈{1,2} is the convolution. Notice that you can effectively reframe

the operation inside of ρ as a single linear operator.

Traditionally, as you go deeper into the neural network, people will reduce the spatial di-
mension and increase the number of channels.

Explaining Bias in the Model

Now we want to explore they this architecture produces bias.
If assume there’s no bias b = 0. The tweedy’s formula

x̂ = xσ + σ2∇ log p̃σ(xσ)︸ ︷︷ ︸
≡sσ(xσ)

(6.3.26)

Since sσ(xσ) is piecewise linear, we can rewrite it as sσ(xσ) = −Jsσ(xσ)xσ. This means we
can rewrite Tweedy’s formula as

x̂ =
(
I+ σ2Jsσ(xσ)

)
xσ (6.3.27)

we can decompose the interior in an eigenbasis.

x̂ =
∑
k

hk⟨xσ, ψk⟩ψk (6.3.28)

This means the difference between prediction x̂ and the true value x, we get

||x̂− x||2=
∑
k

|⟨x̂, ψk⟩ − ⟨x, ψk⟩|2 (6.3.29)

Let’s work through an example, let’s take the probability distribution to be p(x) =

e−
1
2
xTC−1

σ x/Z where Cσ = C+σ2I. This means∇2 log p(x) = −C−1
σ , which has eigenvalues

− 1
βk+σ2

Mallat then presents some numerical experiments on visualizing these learned basis vectors
(see https://arxiv.org/pdf/2310.02557, same link as the previous one).

6.4 Wavlets

6.4.1 Optimal Denoising

Consider observing a noisy signal y = x + z, where x is the true signal, and z ∼ N (0, σ2I).
Our objective is to find a prediction for the true signal x̂ = Hy which is a linear function of
the noisy signal. We want this predictor to minimize ϵ2 = E[||Hy − x||2].

https://arxiv.org/pdf/2310.02557

6.4. WAVLETS 37

Theorem 4 (Wiener Filter) The Winer Filter is

H = (C + σ2I)−1C (6.4.1)

It has eigenvalues

βk

βk + σ2
∈ [0, 1] (6.4.2)

You can show that this predictor minimizes the correlation E[(x̂− x)y]

Definition 11 (PCA Basis) Consider the basis vectors {ψk}k comparised of wavelets

ψk(n) =
1√
d
ei2πnk/d (6.4.3)

⟨Cψk′ , ψk⟩ = βk = E[|⟨x, ψk⟩|2] (6.4.4)

So, now we can change of basis our true signal Hy =
∑

k hk⟨y, ψk⟩ψk. So now how do we
construct the coefficients hk?

x =
∑
k

⟨x, ψk⟩ψk (6.4.5)

E||Hy − x||2 =
∑
k

E
∣∣∣∣∣∣(λk(x) + 1)⟨x, ψk⟩+ hk⟨z, ψk⟩

∣∣∣∣∣∣2 Using y = x+ z (6.4.6)

=
∑
k

∣∣∣∣∣∣(λk(x) + 1)⟨x, ψk⟩+ hkσ
2
∣∣∣∣∣∣2 (6.4.7)

Now I can optimize to find the minimum of this quantity...

0 = ∂hkE||Hy − x||2 =⇒ hk =
|⟨x, ψk⟩|2

|⟨x|ψk⟩|2+σ2
Minimizer (6.4.8)

∴ ϵ =
∑
k

σ2|⟨x, ψk⟩|2

|⟨x, ψk⟩|2+σ2
(6.4.9)

Binary Basis

Ok how does the error change if I only allow for binary decisions on the coefficients (that is
you either have that basis element on or off)

λk =

{
1 |⟨x, ψk⟩|≥ σ

0 |⟨x, ψk⟩|< σ
(6.4.10)

What ends up happening is

ϵ2 =
∑
k

[(λk − 1)2|⟨x, ψk⟩|2+λkσ2] (6.4.11)

If we use the fact 1
2
min(a, b) ≤ ab

a+b
≤ min(a, b), we can show

ϵm ≤ ϵ2 ≤ 2ϵm (6.4.12)

so basically you only loose a factor of two...

38CHAPTER 6. STÉPHANEMALLAT: SCORE BASED DIFFUSION & RENORMALIZATIONGROUP FLOW

Thresholded

What if you consider the expansion

Hy =
∑
k

sthT (⟨y, ψk⟩)ψk (6.4.13)

sthT (a) =

{
a− sign(a)T |a|> T

0 |a|< T
(6.4.14)

If we set T = σ
√
2 log d, you can show

ϵm ≤ ϵ ≤ (2 log d+ 1)[ϵm + σ2] (6.4.15)

You can also show that you cannot do asymptotically better as d → ∞. So this choice is
optimal.

6.4.2 Compression

In practice, denoising and compression end up being similar tasks. So if you have a good
denoising basis, you should try it out on compression. Why is this? Consider the problem
where e want to minimize the error

ϵm ∼ ϵb =
∑
k

min(|⟨x, ψk⟩|2, σ2) (6.4.16)

=Mσ + 2
∑

|⟨x,ψk|>σ2

|⟨x, ψk⟩|2 (6.4.17)

So imagine you want to construct a approximation xM for signal x

x =
d∑

k=1

⟨x, ψk⟩ψk (6.4.18)

xM =
∑
k∈IM

⟨x, ψk⟩ψk (6.4.19)

∴ ||x− xM ||2=
∑
k/∈IM

|⟨x, ψk⟩|2 (6.4.20)

Well IM = {k : |⟨x, ψk⟩|≥ σ}

6.5 Wavelet Slides

Since we’re trying to denoise a time series signal. There are often discontinuous jumps, yet
high frequency noise. So we want to construct a basis where we can pick out high frequency
noise, yet also have short time scale. Fourier transforms work entirely in frequency or time
basis, wavelets allows us to go ”somewhere in between”...

Let’s begin with the simple Haar wavelet

{ψj,n(t) =
1√
2j
ψ(
t− 2jn

2j
)}(j,n)∈Z2 (6.5.1)

This forms an orthogonal basis of L2(R)

6.6. RENORMALIZATION GROUP & HIERARCHIES 39

6.6 Renormalization Group & Hierarchies

We start by recalling physics. Consider a physical state at equilibrium x ∈ Rd. You’ll measure
the states according to a Gibbs distribution

pt(x) =
e−Ut(x)

Z
(6.6.1)

Our goal is to find a parameterized version of U(x). Often U(x) is not convex, the associated
hessian is singular (non-invertible), and it’ll emit long-range correlations. Thinking about
these correlations, this will depend on the ”scale” that we probe at, which we’ll denote by t.
This motivates the usage of the renormalization group.

There are perhaps naive ways of performing RG (Kadnoff RG / Real Space RG).

Suppose your ansatz Ut(x) = ⟨Ot, ϕ(x)⟩. So now let’s ask the question, how do we go from
pj−1 → pj (that is change scales). Let xj−1 = (xj, x̄j) (kept variables, and complement of kept
variables which are orthogonal) (orthognality is prevent Jacobian from popping out). We can
now simply integrate out x̄j and have the effective theory∫

pj−1(xj, x̄j)dx̄j = pj(xj) (6.6.2)

and we’d hope that calculation of sufficient statistics is preserved

⟨O(xj)⟩pj = ⟨O(xj, x̄j)⟩pj−1
(which holds up until the ”scale”) (6.6.3)

In Wilsonian RG, you end up performing the calculation

pj−1(xj−1) = pj−1(xj, x̄j) = pj(xj)p̄j(x̄j|xj) (6.6.4)

where you have created p̄j s.t. it is convex and local.

For notational simplicity let’s denote

p̄j(x̄j|xj) =
e−Ūj(x̄j ,xj)

Z̄j
(6.6.5)

and now you can see Uj−1(xj−1) = Uj(xj) + Ūj(x̄j, xj).

In diffusion, you never want to calculate the transition between pt=0 and pt=T (Gaussian to
target distribution), we want to break it up into little steps (aka annealing)

p0(x0) = pT (xT)
1∏

j=T

p̄j(x̄j|xj) (6.6.6)

So intead of computing O0 in U0 = ⟨O0, ϕ(x)⟩. You want to instead of compute {Os :
Ōj}1≤j≤T .

40CHAPTER 6. STÉPHANEMALLAT: SCORE BASED DIFFUSION & RENORMALIZATIONGROUP FLOW

Sampling

We use Langevin

dxt = ∇ log p(x) +
√
2dWt (6.6.7)

When you’re using a maximum entropy model p(x) ∝ e−U(x)

dxt = −U(x) +
√
2dWt (6.6.8)

• If U(x) is convex, your mixing time is proportional to the condition number of the
Hessian (associated with U)

• If U(x) is not convex, it’ll still converge, but it’ll take a long time...

For example, we can consider using wavlets on a gaussian

p0(x) =
e−U

Z
(6.6.9)

Where U(x) = xTKx/2 = (K)T (1
2
xTx) = ⟨O, ϕ(x)⟩. This means U(x) is convex, and

therefore mixing time is set by the condition number is set by K.

[Mallat makes a point that wavelets keep this condition number invariant as you vary the
scale... Meaning, perform the orthognal decomposition xj−1 = (xj, x̄j) using wavelets,
and now your Kj−1 → K̄j should keep the same condition number. This seems a bit
nontrivial to me, and I’m not sure how to see this...]

In physics this is called renormalization. In machine learning language this is called
batch-normalization.

Training

We perform maximum likelihood to find the parameters. We accomplish this by minimizing
the KL divergence. So let the loss function be

ℓ(θ) = KL(p|pθ) (6.6.10)

= −Ex∼p[log pθ] + (Constant w.r.t. θ) (6.6.11)

If U = ⟨θ, ϕ(x)⟩, then ∇2ℓ(θ) = Covpθ [ϕ]

6.7 Continuous Ising, ϕ4 Model

Consider the target distribution defined by U0(x) =
1
2
xTKx+

∑
i V (x(i)). In particular let’s

focus on the case V (x) =
∑

a αkpk(a). So in the U = ⟨O, ϕ(x)⟩ formulation, O = (K,αk) and
ϕ(x) = (xTx,

∑
i x

k(i)).

Experiments in https://arxiv.org/abs/2207.04941 show that this works well!

6.8 Can we use this in other things?

See Wavelet Score-Based Generative Modeling, Learning Multi-scale local conditional proba-
bility model of images, scattering spectral models for Physics.

https://arxiv.org/abs/2207.04941

6.8. CAN WE USE THIS IN OTHER THINGS? 41

hi

42CHAPTER 6. STÉPHANEMALLAT: SCORE BASED DIFFUSION & RENORMALIZATIONGROUP FLOW

Chapter 7

Marc Mézard: Statistical Physics of
Generative Diffusion

7.1 Overview

1. Langevin-Fokker Planck & Ornstien Uhlenbeck

2. Principles of Generative Diffusion

3. A simple case: Gaussian Data

4. Aside: Related approaches ODE and Stochastic Localization & Interpolants

5. Intermission: Thermodynamic Score

6. A harder case: Curie Weiss

7. Speciation Transition: Classifier Free Guidance

8. Generalization vs Memorization

7.2 Recall: Stochastic Processes

7.2.1 Langevin Equation

Let x ∈ Rd, and has the state equation

dx

dt
= F (x) + η(t) (7.2.1)

where F : Rd → Rd is the force field, and η(t) is a Gaussian with properties ⟨η(t)⟩ = 0 and
⟨η(t)η(t′)⟩ = 2δ(t− t′). In stochastic process notation it is

dxt = f(x)dt+
√
2dWt (7.2.2)

In general, Mezard will work in continuous time. However whenever we want to make a
comment about implementations on a computer, we’ll use the Ito descretization.

x(t+ δt) = x(t) + δt F (x(t)) +

∫ t+δt

t

dτη (τ) (7.2.3)

43

44CHAPTER 7. MARCMÉZARD: STATISTICAL PHYSICS OF GENERATIVE DIFFUSION

and

δx = δtF (x(t)) +
√
2δtzt (7.2.4)

where zt is a unit gaussian.

Note the integral of the time-dependent gaussian is given by

⟨y⟩ :=
∫ t+δt

t

η(τ)dτ (7.2.5)

has the following properties ⟨y⟩ = 0 and ⟨y2⟩ = 2δt.

7.2.2 Fokker Planck

Consider the conditional distribution pt(x|x0), the equation which keeps it probabliity distri-
bution is the Fokker Planck equation

∂pt
∂t

= ∆pt −∇ · (Fpt) (7.2.6)

where F is a vector field. You can then ask what’s condition of the stationary distribution,
that is ∂tpt = 0, it must satisify

∆pt +∇ · (p∇V) = 0 (7.2.7)

pstationary(x
′) =

1

Z
e−V (x) (7.2.8)

Note that our usage of
√
2 in the previous section was to ensure we get a temperature β = 1.

7.2.3 Ornstein Uhlenbeck

This is when V (x) = 1
2
|x|2. So the Langevin equation becomes

ẋ = F (x) + η(t) =⇒ ẋ = −x+ η(t) (7.2.9)

and your stationary distribution becomes

pst(x) = e−|x|2/2 (7.2.10)

For example, if you have x(t = 0) = a ∈ Rd. Then the solution to the Langevin becomes

x(t) = ae−t +

∫ t

0

e−(t−τ)η(τ)dτ (7.2.11)

the second term is equivalent to the random variable N (0, 1 − e−2t), and we’ll notate
∆t = 1− e−2t.

So you can interpret this process as something which always goes to white noise.

7.3. PRINCIPALS OF GENERATIVE DIFFUSION 45

7.2.4 General Time and Variance

Consider the equation

dx

dt
= f(t)x(t) + g(t)η(t) (7.2.12)

previously g = 1, but now f : Rd → Rd and g : Rd → Rd. Solving the equation with the same
boundary condtion as before (x(t = 0) = a), you get

x(t) = as(t) + s(t)σ(t)z(t) (7.2.13)

s.t.

s(t) = exp
[∫ t

0
dτ f(τ)

]
σ(t)2 = 2

∫ t
0
dτ
(
g(τ)
s(τ)

)2 (7.2.14)

Example: Brownian Motion is recovered when f = 0 and g = 1.

7.3 Principals of Generative Diffusion

For some background reading for this section there’s: Sohl-Dickstein et al (2015), Yang
Song & Stefano Ermon (2019), and a Review by Ling Yang et al (ArXiv:2209.00796).

In generative modeling, the problem setup is that you have an a target distribution p0(a) s.t.
a ∈ Rd, however you only have an empirical estimation of said target distribution {aµ}nµ=1

(and was assume aµ was sampled iid from the target distribution). Your goal is to use a ML
to reconstruct & sample from the target distribution using only knowledge from the empirical
distribution.

7.3.1 Forward Process

Let a ∈ Rd (where a ∼ p0), and x(t = 0) = a. The forward process is the OU process, which
we recall as

ẋ = −x+ η(t) =⇒ x(t) = ae−t +
√

∆tzt (7.3.1)

where ∆t = 1−e−2t. At time t we say that x ∼ pt(x) which has time evolution of the Langevin

∂pt
∂t

= ∆pt +∇ · (xpt) =⇒ pt(x) =
e−(x−ae−t)/2∆t

(2π∆t)d/2
= N (x; ae−t,∆t) (7.3.2)

This means that if a ∼ p0, then we have a joint probabity distribution over a and it’s
(partially) noised counter part x.

pt(a, x) = p0(a)N (xt; ae
−t,∆t) (7.3.3)

pt(x) =

∫
da p(a, x) (7.3.4)

p(a|xt) =
p(a)N (x; ae−t,∆t)∫

da′p0(a′)N (xt; ae−t,∆t)
(7.3.5)

46CHAPTER 7. MARCMÉZARD: STATISTICAL PHYSICS OF GENERATIVE DIFFUSION

7.3.2 Backwards Process

To notate the backwards process, let’s notate our time notation. Previously t starts at 0, and
ends at tf . In our backwards process, τ starts at 0 (which corresponds to t = tf) and ends at
τf (which correspond to t = 0). So τ = tf − t. If we plug in this coordinate change into our
Langevin

−∂p
∂τ

= ∆p+∇ · (xp) =⇒ ∂p

∂τ
= −∆p−∇(xp) (7.3.6)

Ok, restarting from the general Fokker Planck

∂p

∂τ
= ∆p−∇(Fp) (7.3.7)

What force-field F do we need to recover the backwards process (7.3.6). If you ansatz F =
x + 2∇ log p, you can recover the right thing. In general, if you want to undo the forward
process (of OU process), the probability in the score is taken to be pFtf−τ (x) (the probability

of the forward process).

A comment on notation. The forward probability distribution P F
t (x) and the backwards

probability distribution PB
τ (x) are related via

P F
t (x) = pBtf−t(x) (7.3.8)

In the case tf ≫ 1

pFtf (x) =
e−x

2/2

Z
(7.3.9)

log p = −x
2

2
+ C (7.3.10)

∇ log p = −x (7.3.11)

In the case t ≃ tf ≫ 1

F (x) = x+ 2∇ log p = −x (7.3.12)

7.3.3 Comment on Discretization

See Ho Jain Abbeel (NeurIPS 2020).

7.3.4 The Score

Theorem 5 (Tweedie’s Formula)

Consider your probability pt(x) =
∫
da p0(a)

e−(x−ae−t)2/(2∆t)√
2π∆t

. This means the joint probability

pt(a, x) = p0(a)N (x; ae−t,∆t) (where a is xt=0). The score of pt(x) becomes

φ = ∇x log pt(x) =
1

pt(x)

∫
da p0(a)

−(x− ae−t)
∆t

e−(x−ae−t)2/(2∆t)√
2π∆t

(7.3.13)

= − x

∆t

+
e−t

∆t

⟨a⟩x,t (7.3.14)

where ⟨a⟩x,t =
∫
da a P (a|x, t) =

∫
da a p0(a)e−(x−ae−t)2/2∆t∫
da p0(a)e−(x−ae−t)2/2∆t

7.3. PRINCIPALS OF GENERATIVE DIFFUSION 47

7.3.5 Approximating the Score

Say p0 is unknown, but we have a dataset {aµ}nµ=1 ∼iid p0. We will parameterize an estimate
of the score φθ(x, t), so now we need a loss function to minimize. A typical loss function is

L =

∫ tf

0

λ(t)Ex∼pt [|φθ(x, t)−∇ log pt(x)|2]︸ ︷︷ ︸
Lt

(7.3.15)

The λ(t) is a Lagrange multiplier throughout time. Let’s inspect the Lt term. If you integrate
by parts you can show

Lt = Ex[|φθ(x, t)|2−2φθ(x, t) · ∇ log p] + Constant (7.3.16)

−2E[φθ(x, t) · ∇ log p] = −2
∫
dx

∫
dap0(a)

x− aet

∆t

e−(x−ae−t)2/2∆t

√
2π∆t

φθ(x, t) (7.3.17)

∴ Lt = Ea∼p0Ex∼pOU (x|a)

[∣∣∣φθ(x, t) + x− ae−t

∆t

∣∣∣2] (7.3.18)

Because the OU process has the dynamics

x = ae−t + z
√

∆t =⇒ x− ae−t

∆t

=
z√
∆t

(7.3.19)

where z ∼ N (0, 1), this implies that Lt is heuristically Ez[|φθ(ae−t + z
√
∆t, t) + z|2], so you

can interpret this as matching noise z!

7.3.6 Various Scores

Perfect Score

Consider the model

p0(a) =
e−E(a)

Z
, φ(x, t) =

1

∆t

(−x+ e−t⟨a⟩x,t) (7.3.20)

asdf

p(a|x, t) = 1

Z(x)
p0(a)e

−(x−ae−t)2/2∆t (7.3.21)

See KPZ and Burger’s Equation...

Empirical Score

If you only have a database {aµ}nµ=1, the best thing you can do is pemp0 = 1
n

∑n
µ=1 δ(a − aµ).

This means our OU processed empirical becomes

pempt (x) =
1

n

n∑
µ=1

e(x−a
µe−t)2/2∆t

(2π∆)n/2
(7.3.22)

Notice this is just a Gaussian mixture model. The empirical score is

φemp(t, x) = ∇ log pempt (x) (7.3.23)

=
∑
µ

−x− a
µe−t

∆t

e−(x−aµe−t)2/2∆t

/∑
µ

e−(x−aµe−t)2/2∆t (7.3.24)

48CHAPTER 7. MARCMÉZARD: STATISTICAL PHYSICS OF GENERATIVE DIFFUSION

Fitted Score

L = Ea,x∼pt(a,x)[φθ(x, t) +
x− ae−t

∆t

|2 (7.3.25)

=
1

n

∑
µ

Ez∼N (0,1)

[
φθ(x

µ, t) +
z√
∆t

]
(7.3.26)

where xµ = aµe−t + z
√
∆t is the input noised via OU process.

Unfortunately there’s not much more we can do with this, we must now put it on the computer
and see what comes out.

More General Time + Variance

Instead of just using OU process, what if we noise the image according to

dxi
dt

= fi(t)xi + gi(t)ηi(t) (7.3.27)

where x = (x1, ..., xd) and boundary condition x(t = 0) = ai ∼ p0(a). This yields a PDE on
the probability Law(x(t)) ∼ pt, this is

pt(x) = p0(a)
e−(x−as(t))2/2s(t)2σ(t)2√

2πs(t)σ(t)
(7.3.28)

=⇒ φ(x, t) = ∇ log pt(x) = −
x

s(t)2σ(t)2
+

s(t)

s(t)2σ(t)2
⟨a⟩x,t (7.3.29)

7.4 A First Example: Gaussian Data

Consider your data’s distribution is p0 = N (m,Σ). We’ll notate
∑

ij aiΣijaj = ⟨a|Σ|a⟩ using
bra-ket notation. So this means our noised distribution is

p(a, x, t) =
e−

1
2
⟨a−m|Σ−1|a−m⟩

√
2π

d√
detΣ

e
− 1

2∆t
(x−ae−t)2

√
2π∆t

d
(7.4.1)

So our marginalized distribution on pt(x) becomes

pt(x) =

∫
da p(a, x, t) = N (me−t,Γt) (7.4.2)

where Γt = ∆tId + e−2tΣ.

Perfect Score

∇ log pt = −(Γ−1
t)(x−me−t) (7.4.3)

In the case when t≫ 1: you recover ∇ log pt = −x (so it’s a Gaussian!). In t≪ 1: ∇ log pt ∼
(Σ...)

7.4. A FIRST EXAMPLE: GAUSSIAN DATA 49

Optimized Score

Now your objective is to construct a parameterized score φθ from data {aµ}µ ∼iid p0. If you’re
smart you know that the answer must be linear, so let’s ansatz our parameterized score as

φθ(x, t) = −Wx− b (7.4.4)

Now we can argmin the loss. However, we’ll assume the case when m = 0 and b = 0.

L(t) = Ea∼pemp
0

Ex∼N (ae−t,∆tI)|φθ(x, t) =
x− ae−t

∆t

|2 (7.4.5)

where x = aµe−t +
√
∆tz is the noised initial data according to OU. Plugging in our ansatz

(7.4.4), we get

|φθ(x, t) +
x− aµe−t

∆t

|2 = |−W (aµe−t +
√

∆tz) +
z√
∆t

|2 (7.4.6)

Lt = Ez[|φθ(x, t) +
x− aµe−t

∆t

|2] = 1

∆t

Tr[(I−∆tW)T (I−∆tW)] +
e−2t

∆t

⟨aµ|W TW |aµ⟩

(7.4.7)

We note that ⟨aµ|W TW |aµ⟩ = Tr(W TWCe) where Ce
ij =

1
n

∑
µ a

µ
i a

µ
j = 1

n
aaT is the empirical

correlation function. Finally let’s optimize over W to find the minimum of the loss

∂Lt

∂W
= 0 =⇒ Wopt = [(1− e−2t)I+ e−2tCe]−1 (7.4.8)

So in the limit as your amount of data n → ∞, you find that Ce → Σ and Wopt →
Wperfect.

We can attempt to generalize some of these results using Random Matrix Theory.

Say for example the covariance matrix Σ gets some Gaussian Noise. Meaning I observe
an empirical noisy covariance H

H = Σ+
1

da/2
G (7.4.9)

where G ∼ GOE(d). There are known results on this (since Σ ≈ aaT is a rank-1 pertur-
bation).

• When a > 1: Eigenvalues of eigenvectors of H are on the order of eigenval-
ues/vectors of Σ. Only in this case will your reconstruct the original distribution.

• If a ∈ (0, 1), the eigenvalues of H are on the order of Σ, however the eigenvectors
differ in directions.

The lesson to be learned is that, what you find for Isotropic Gaussian, is not same for
high-covariance Gaussian.

50CHAPTER 7. MARCMÉZARD: STATISTICAL PHYSICS OF GENERATIVE DIFFUSION

7.5 Related Approaches i.e. ODE, Stochastic Localiza-

tion, & Interpolants

7.5.1 Ordinary Differential Equations

Consider the stochastic differential equation

ẋ = F (x) + η(t) (7.5.1)

where ⟨η⟩ = 0 and ⟨η(t)η(t′)⟩ = 2δ(t−t′). It has an associated time evolution on Law(xt) = pt

∂p

∂t
= ∆p−∇(Fp) = ∇(Fp−∇p) (7.5.2)

So if we introduce the function g(x) = F (x, t)− φ(x, t) (where φ = ∇x log pt(x) denotes the
score). Then you get the continuity equation (Mezard calls this a “flow equation”).

∂p

∂t
+∇(g(x, t)p) = 0 (7.5.3)

Using this transformation, we now see our forward stochastic differential equation is

ẋ = g(x, t) (7.5.4)

There’s an interesting paper (https://arxiv.org/abs/2006.00702) which shows how to es-
timate the solution to the Fokker Planck equation by using a mean-field limit of evolving
many particles. Could be cool.

Anyways, what is the flow for the backwards process

dx

dτ
= FB(x, τ) = η(τ) (7.5.5)

FB(x, τ) = 2φ(x, τ) (7.5.6)

dpB

dτ
+∇(pB(FB(x, τ)−∇ log pB)) = 0 (7.5.7)

=⇒ ẋ = x+ φ(x, t) (7.5.8)

So you might be tempted to say we should do this over diffusion, as you don’t have to
sampling random numbers in the dynamics... However it is (said in the literature to be)
harder to sample multimodal distributions.

7.5.2 Example with Isotropic Gaussian

Consider the target distribution

p0(a) =
e−|a|2/2σ2

√
2πσ2

(7.5.9)

The interpolated distribution (via OU process) is

pt(x) =
e|x|

2/2Γt

√
2πΓt

=⇒ φ(x, t) = ∇x log pt(x) = −x/Γt (7.5.10)

And our ODE is

ẋ =
x

1 + (σ2 − 1)e−2(tg−τ)
(7.5.11)

https://arxiv.org/abs/2006.00702

7.5. RELATED APPROACHES I.E. ODE, STOCHASTIC LOCALIZATION, & INTERPOLANTS51

7.5.3 Stochastic Interpolants

For the original method, see Albergo & Vanden-Eijnden. What they realized is that we start
with some inital distribution p0 and we map it to a final gaussian pfinal ∝ e−x

2/2.

At each time t , you generate x(t) = α(t)a+ β(t)z (where z ∼ N (0, I)). And since you want
to recover xt=0 ∼ p0 and xt=tf ∼ pfinal we assert boundary conditions α(0) = 1, β(0) = 0
and α(tf) = 0, β(tf) = 1, which asserts x(0) = a and x(tf) = z. We denote α, β as the
interpolant.

So what you should have noticed is that we don’t assert any Langevin. We just assert
our interpolation scheme. This allows for flexibility in the engineering process! If we assert
Law(xt) = pt(x), we can once again derive a time evolution on the probability distribution

pt(x|a) =
e
− 1

2β(t)2
|x−α(t)a|2√

2πβ(t)2
d

(7.5.12)

p(a|x, t) = 1

Z
p0(a)e

− 1
2β(t)2

|x−α(t)a|2
(7.5.13)

And this probability distribution satisfies

∂pt
∂t

+∇(b(x, t)pt(x)) = 0 (7.5.14)

where b(x, t) = Ea,z[α̇a+ β̇z|αa+ βz = x].

Let’s prove this!

pt(x) =

∫
da p0(a)

∫
Dzδ(x− (α(t)a+ β(t)z)) (7.5.15)

Plugging this into the continuity equation

∂pt(x)

∂t
= −

∫
da p0(a)

∫
Dz [α̇(t)a+ β̇(t)z]∇̇δ(x− (α(t)a+ β(t)z)) (7.5.16)

= −∇ ·
[
p(x, t)

∫
da p0(a)

∫
Dz[α̇a+ β̇z]

δ(x− (αa+ βz))

p(x, t)

]
(7.5.17)

So you’ll notice,
∫
da p0(a)

∫
Dz [α̇a+ β̇z] δ(x−(αa+βz)

p(x,t)
= Ea,z[α̇a+ β̇z|αa+ βz = x], which

is b(x, t).

QED.

Why bring this up? Well diffusion is just a subset of potential stochastic iunterpolants where

z =
x− αa
β

, b(x, t) =
e−2t

∆tx− e−t

∆t

⟨a⟩x (7.5.18)

7.5.4 Unifying Framework for Langevin, ODE, and Stochastic In-
terpolants

Starting from the continuity equation for stochastic interpolants (7.5.14). If we ansatz b

bFλ (x, t) = b(x, t) + λφ(x, t) (7.5.19)

52CHAPTER 7. MARCMÉZARD: STATISTICAL PHYSICS OF GENERATIVE DIFFUSION

Then the continuity equation becomes

∂pt
∂t

+∇ · (bFλ (x, t)pt) = λ∇ · (φ(x, t)pt) = λ∆pt (7.5.20)

You now have a Fokker Planck equation which emits a SDE interpretation

dx

dt
= bFλ (x, t) +

√
λη(t) (7.5.21)

If we look at a couple cases

• λ = 1 we recover our usual Langevin

• λ = 0 we recover ODE (flow based methods)

7.5.5 Stochastic Localization

For the original, see R. Eldan (2013, 2020, 2022); El Aloni Montanar Selke (2022); Montanari
(2023).

Montanari’s ”interpolant” is of the form

x(τ) = aτ +
√
τz (7.5.22)

where z ∼ N (0, I). You now find that

pτ (x|a) =
1

√
2πτ

d
e−

τ
2
(x
τ
−a)2 (7.5.23)

When I look at the limit τ → ∞, you get x
τ
→ a. You can think of this as performing a

random walk where you converge to a, but your variance explodes.

Looking at the conservation equation

∂pτ (x)

∂τ
+∇ · (bp) = 0 (7.5.24)

s.t. b(x, τ) = E[a+
1

2
√
τ
z|aτ +

√
τz + x] =

x

2τ
+

1

2
⟨a⟩x,τ (7.5.25)

And once again using Fokker Planck, you get the SDE

ẋ = ⟨a⟩x,t + η(τ) (7.5.26)

Example on EBM

Consider the exponential family distribution p(a) = e−βE0(a)/Z where
∑d

i=1 a
2
i = d and

E0(a) = −
∑

i<j<k Jijkaiajak (which is a p = 3 spin glass).

We know as a function of temperature, we know there’s a low temperature spin glass phase
(β > βk), high temperature phase (β < βd), and there’s an intermediate phase β ∈ [βd, βk]. In
the glassy & intermediate phase, MCMC / Langevin don’t work (because of critical slowing
down).

p(a|x) = eβ
∑
Jijkaiajak−γ

∑
i(ai−xi)2 (7.5.27)

7.6. CURIE WEISS MODEL 53

Let’s inspect the phase diagram as we tune the pinning field γ(τ) (s.t. γ(τ = 0) = 0 and
γ(τ =∞) =∞).
What this suggests is that below Tcrit, diffusion cannot sample well, while BP still can.

(What Mezard means by this is that we can use BP to compute marginals / expectation
values without sampling. This is NOT contradictory to UNets can realized BP algorithms
because that paper talks about using BP for sampling).

7.6 Curie Weiss Model

Consider the target distribution over varaibles a ∈ {±1}d

p0(a) =
1

Z
e−

β
2d

(
∑

i ai)
2

(7.6.1)

p0(a) =
1

Z

∫
dme−

βd
2
m2+βm

∑
i ai Introduced auxiliary variable m (7.6.2)

So now you have a joint distribution p0(m, a). If you then marginalize over a, you get

p0(m) =
1

Z
e−βd[

m2

2
− 1

β
log(cosh(βm))] (7.6.3)

The free energy F (m) has a minimum at m = tanh βm (self consistency equation). While
this is nice, for the purposes of pedagody, let’s look at a a slightly simpler model (modified
Curie Weiss), which has the following distribution

p0(a) =
1

2

∏
i

eβm
∗ai

2 cosh(βm∗)︸ ︷︷ ︸
≡p+(a)

+
1

2

∏
i

e−βm
∗ai

2 cosh(βm∗)︸ ︷︷ ︸
≡p−(a)

(7.6.4)

meaning you have P[m = ±m∗] = 1/2.

7.6.1 Generative Diffusion w/ Perfect Score

The probability distribution endowed via the OU process becomes

pt(x, a) =
1

2
p+t (x, a) +

1

2
p−t (x, a) (7.6.5)

where p±t (x, a) =
∏
i

e−(x2i−e−2t)/2∆t

√
2π∆t

d

∏
i

e(±βm
∗+xie−t/∆t)ai

2 cosh(±βm∗ + xie−t/∆t)
(7.6.6)

we can compute the score via Tweedy’s Formula.

pt(a|x) =
1

Z

(∏
i

e(βm
∗+xie−t/∆t)ai +

∏
i

e(−βm
∗+xie−t/∆t)ai

)
(7.6.7)

Now we can compute ⟨a⟩x,t (which takes two pages of calculation in Mezard’s notes)

⟨ai⟩x,t =
Q+(x) tanh(βm

∗ + xi
e−t

∆t
) +Q−(x) tanh(−βm∗ + xi

e−t

∆t
)

Q+(x) +Q−(x)
(7.6.8)

s.t. Q±(x) =
∏
j

(1±m∗ tanh(xje
−t/∆t)) (7.6.9)

54CHAPTER 7. MARCMÉZARD: STATISTICAL PHYSICS OF GENERATIVE DIFFUSION

The backwards langevin becomes

dxi
dτ

= xi + 2φi(x, τ) + ηi(τ) (7.6.10)

s.t. φi(x, τ) = −
xi

∆tg−τ
+
e−(tf−τ)

∆tf−τ
⟨ai⟩x,tf−τ (7.6.11)

7.6.2 Speciation Transition

In the Regime t = tf − τ ≫ 1 (so you’re at the beginning of the backwards process). Then

Q±(x) →
t≫1

exp

(
±m∗ e

−t

∆t

∑
j

xj

)
Linearized tanh(...) (7.6.12)

The Langevin equaiton in this limit becomes

dxi
dτ

= xi(1−
2

∆t

) + 2m∗ e
−t

∆t

tanh[m∗ e
−t

∆t

∑
j

xj] + ηi(t) (7.6.13)

Each variable xi, time-evolves almost independently and is coupled via the order parameter
(which ends up being the magnetization m∗)! We now introduce an order parameter µ

µ =
1√
d

d∑
i=1

xi (7.6.14)

Now we can ask the question what is the time-evolution of µ just by summing xi

dµ

dτ
= −µ+ 2m∗

√
de−t tanh(m∗

√
de−tµ) + η(τ) (7.6.15)

= −∂Vτ (µ)
∂µ

+ η(τ) (7.6.16)

where Vτ (µ) =
1
2
µ2 − 2 log cosh(m∗

√
de−tµ).

In the regime
√
de−t ≪ 1, we see that Vτ (µ) ≃ µ2.

In the regime
√
de−t ≫ 1, you find log cosh(...)→ |µ|m∗

√
de−t, meaning Vτ (µ) ≃ µ2+ |µ|

(it has symmetry breaking!).

This means there’s some characteristic time-scale tsp (which Mezard calls the speciation
time), in which the samples must choose wether to the positive magnetization distribution
or the negative magnetization distribution.

In this particular example tsp =
1
2
log d

Experimental measurements of speciation

• Cloning (see Biroli, Bonnaic, De Bortali). Imagine you have one partical, and
you run it through backwards Lagevin ∂tx1 = xi + 2φ(x, t). Once it gets to a
specific time, we clone it, and then ask ”what is the probability that the two clones
go to the same class?”. Repeat for many different times, and hopefully you can
experimentally measure hte speciation time.

• U-Turn (see Behjoo-Cherthov). Start at a point in the database, and then put it

7.7. GENERALIZATION VS MEMORIZATION IN DIFFUSION MODELS 55

through the forward process and arrive at a specific time. Now you let it evolve
backwards using Langevin, and ask the quesiton if it goes back to the same class or
a new class. Repeat for many different times.

In the Regime (II) t < tsp.

Analysis reveals that Q−(x)
Q+(x)

∼ e−ad. This allows us to say

⟨ai⟩x,t = tanh

(
βm∗ + xi

e−t

∆t

)
(7.6.17)

=⇒ dxi
dτ

= xi − 2
xi

∆tf−τ
− 2

e−(tf−τ)

∆tf−τ
tanh

(
βm∗ + xi

e−t

∆t

)
+ η(τ) (7.6.18)

So you can see the measure will concentrate from real-valued variables to a binary variables.

asdf

pt(x) =

∫
da p0(a)

e−(x−ae−t)2/2∆t

√
2π∆t

d
(7.6.19)

= e−x
2/2∆teg(x) (7.6.20)

where g(x) = log

[∫
da p0(a) e

−1
2

|a|2e−2t

∆t
+ e−t

∆t
x·a
]
. If we’re interested in sampling high-dimensional

distirbutions (that is we have a lot of spins) d≫ 1, this implies the speciation time will grow,
so we’d like to inspect the limit t ≫ 1 =⇒ e−t ≪ 1. Now we can do a ”Landau-Type
expansion of g(x)”

g(x) =
e−t

∆t

∑
i

xi⟨ai⟩+
1

2

e−2t

∆t

∑
ij

Cijxixj +O(x3) (7.6.21)

where Cij = ⟨aiaj⟩p0 − ⟨ai⟩p0⟨aj⟩p0 . Plugging in this expansion back into pt(x), and then
loging it, we get

=⇒ log pt(x) ≈ c0 +
∑
i

xi...+
∑
ij

(
− δij
2∆t

+
1

2∆t

e−2tCij

)
xixj (7.6.22)

Let’s inspect the
∑

ij term. This really looks like a matrix

M = I− e−2tC (7.6.23)

so in t≫ 1 =⇒ M ≻ 0.

7.7 Generalization vs Memorization in Diffusion Mod-

els

Consider the dataset D = {aµ}µ=1,...,n, meaning you have an empirical distribution pemp0 (a) =
1
n

∑
µ δ(a − aµ). This means your empirical distribution (the data noised by the OU pro-

cess) becomes pempt (x) = 1
n

∑
µ
e−(x−aµe−t)2/2∆t

√
2π∆t

d . This means your empirical score is φ(x, t) =

∇x log p
emp
t (x).

56CHAPTER 7. MARCMÉZARD: STATISTICAL PHYSICS OF GENERATIVE DIFFUSION

Recall that a perfectly train system, that is you find a score which perfectly matches φ,
then p0(τ = tf) = pemp0 . So in training your model, you actually want to do this, this would
be useless.

Definition 12 (Collapse Time) Marc defines a heuristic model collapse time. Basically
you perform your experiment for tspec time, but instead of class, you see if it goes back to the
same training data point.

7.7.1 Rigorous Calculation

Up until now, we have just been talking about heuristics. Here’s let’s attempt to do a rigorous
calculation to find a collapse time.

First let’s define a quantity which is not-extensive w.r.t. dimension.

Definition 13 (Entropy Criterion)

S(t) = −1

d

∫
dx pt(x) log pt(x) (7.7.1)

Our goal will be compare this to n separated Gaussians

Ssep(t) =
log n

d
+

1

2
+

1

2
log(2π∆t) Separated Gaussians (7.7.2)

we’ll denote the difference as the excess entropy

f(t) = Ssep(t)− S(t) (7.7.3)

In the limit t≫ 1

S(t)→ 1

2
log(2πe) (7.7.4)

Ssep(t)→ log n

d
+

1

2
log(2πe) (7.7.5)

So to get any excess entropy, we’d need logn
d
∼ O(1), which means n ∼ O(ed) (the number of

samples must be exponential in the number of dimensions / spins).

Now let’s setup our problem. Consider getting n/2 samples from N (m,σ2I) and n/2 samples
from N (−m,σ2I). I noise these points using OU process

pempt (x) =
1

n

∑
µ

e−(x−aµe−t)2/2∆t

√
2π∆t

d
(7.7.6)

Let’s inspect the collapse time on going to training data point a1. At time t, your noised
trajectory is x = a1e−t + z

√
∆t. So we can decompose our model as

pt(x) =
1

n
√
2π∆t

d
(z1 + z2,...,n) (7.7.7)

where z1 = e−(x−a1e−t)2/2∆t and z2,...,n =
∑n/2

µ=2 e
−(x−aµe−t)2/2∆t +

∑n
µ=n/2+1 e

−(x−aµe−t)2/2∆t .

The decomposition of z2...n is quite big so let’s denote Z+ ≡
∑n/2

µ=2 e
−(x−aµe−t)2/2∆t and

7.7. GENERALIZATION VS MEMORIZATION IN DIFFUSION MODELS 57

Z− =
∑n

µ=n/2+1 e
−(x−aµe−t)2/2∆t .

In the large d, large n limit,

Z± ∼ e−dψ± (7.7.8)

z1 = e−|z|2/2 ≃ e−d/2 (7.7.9)

which ψ± is the large deviation free entropy.

pempt ∝ (z1 + e−dψ+ + e−dψ−) (7.7.10)

Cases

• If ψ+ < 1
2
, this means z1 is negligable. Meaning you can pick out other data points.

Therefore the model has NOT collapsed.

• If ψ+ > 1
2
, this means other terms are exponentially supressed w.r.t. z1. Therefore

you’ll only recover z1, hence the model has collapsed.

So what is ψ±?

Z+ =
eαd/2∑
µ=2

e−dϵ
µ

, ϵµ =
(x− aµe−t)2

2∆td
(7.7.11)

ψ+ = −1

d
logZ+ (7.7.12)

It’s the free energy of the Random Energy Model. Marc said he’s tired of teaching Replica
Trick calculations hahaha, so he’ll solve it with formal methods using large deviation theory.

Fix x = a1e−t + z
√
∆t. If we assume aµ are sampled iid, then this means ϵµ are also iid.

It turns out the probability distribution of ϵ becomes

p(ϵ) ≃d→∞ eds(ϵ) (7.7.13)

where s(ϵ) a concave function with a maximum s(ϵ0) = 0

ϵµ ∼ 1

2d∆t

(|x|2−|aµ|2e−2t) (7.7.14)

However because our partition function has exponentially points, you can’t just estimate the
typical point.∫

dϵ p(ϵ)e−λdϵ =

∫
dϵ ed(s(ϵ−λϵ) (7.7.15)

Ea[e−λ|x−ae
−t|2/2∆t = edg(λ) (7.7.16)

where g(λ) = maxϵ(s(ϵ)− λϵ), which you find via inverse Legendre transform, which you see
is g(λ) = s(ϵ).

Z+ =
1

2
eαd
∫
dϵed(s(ϵ)−ϵ) (7.7.17)

And you find the collapse time tcollapse =
1
2
log(1 + σ2

e2α−1
), where e2α = n2/d. If you redo this

calculation on a hidden manifold, e2α → e2/dim(manifold).

58CHAPTER 7. MARCMÉZARD: STATISTICAL PHYSICS OF GENERATIVE DIFFUSION

Chapter 8

Arvind Murugan: Learning without
Neurons

8.1 Overview

Since we’re talking about learning without neurons, perhaps we should talk about what we
mean about making computation. Murugan states there are two types of computation

1. Symbolic: These are analytic expressions which a compute can crunch / a human can
set

2. Behavior: Living organism / smart materials which respond and interact with their
environment.

The talk will focus on the latter. However computations are used to solve problems, so let’s
also define some ways of solving problems. Let’s work through an example of heating and
cooling a room with an AC.

1. Abstraction First:

An example of this is PI control. So you set up a control flow.

Figure 8.1: Diagram of control line

This defines a differentiation equation which defines your control line z due to observa-
tion of a process x

59

60 CHAPTER 8. ARVIND MURUGAN: LEARNING WITHOUT NEURONS

• Pros:

• General / modular

• Cons

• Cannot exploit specific physics

• The translation between theory vs implementation is non-trivial.

2. Physics First:

You can set up a thermodynamic state equation, and solve for the phase diagram. Pros
and Cons

• Pros:

• Fewer parts (measurement, computation), which means its more robust

• It’s passive, meaning it self computes

• Cons

• Specific to the physics

This talk will focus on how to move toward the 2nd way of thinking. An example of this is
the Liquid-Liquid phase transition of two liquids inside of a cell (see Zechnor 2020). You can
think of this as oil and water separating.

There are two communities working on this

1. Energy efficient computations (vs silicon).

• Example. We currently run computations on a silicon chip, however this is not
energy efficient, so much so governments are thinking about building more nuclear
reactors to power the next generation of AI). So perhaps we can build biological
circuits which run these computations natively on some bio-efficient chip.

• Example. Encode your optimization problem onto a Ising-like physical system,
and anneal that system! Now you can read off optimized parameters.

• Example. You can use optimal computing to make better matrix multiplication.

2. Biological computations

• Backprop. That is each organism is reacting and adjusting it’s behavior. Much
more complex than just physics or chemical behavior.

• Evolution. No one organism does the computation, but rather it’s the ensemble of
them which can perform computations.

• Physics / Chemistry. It’s just a reaction based on laws of physics / chemistry.

Now, how does this all relate to machine learning. Let’s consider a high dimensional classifier–
you could think of the decision boundary as phase boundaries. You can also go one step fur-
ther and use the transition between phases as the classifier (see https://www.jbc.org/article/
S0021-9258(20)36794-6/pdf for more details)! So your features correspond to temperature,
pressure, etc., and your classification is the phase. So the questions become what in the ma-
terial / organism do I have to tune s.t. you can learn, and this also may find new interesting
physical mechanisms for scientists to play with.

https://www.jbc.org/article/S0021-9258(20)36794-6/pdf
https://www.jbc.org/article/S0021-9258(20)36794-6/pdf

8.1. OVERVIEW 61

Figure 8.2: Decision boundary problems can be mapped into a physics system by inspecting
their phase transition

8.1.1 Training Molecules

Hopefield Associative Memory

Consider a set of neurons {xi}Ni=1 which take on binary values xi ∈ {±1}. It takes on discrete
dyanmics

xi(t+ 1) = sign

(∑
j

Jijxj(t) + hexti (t)

)
(8.1.1)

Your task is a supervised learning problem... The goal is to store a set of memories mα
i ∈ RN

(s.t. α = 1, ...,M). And you want to retrieve a memory m from a just showing a partial part
of m (association). That is you want your neurons {xi} to fire in the same pattern as m

To train this model, we use a Hebbian learning rule

dJij
dt

= xi(t)xj(t) (8.1.2)

We run this every time we should it a new memory. So for example, after being exposed to
3 memories {m(1),m(2),m(3)}, our couplings look like Jij = m

(1)
i m

(1)
j +m

(2)
i m

(2)
j +m

(3)
i m

(3)
j .

Running this process will make the energy landscape become low where x = m(i)– so if you
train on images, and then show noised versions of those images, then you’ll be-able to denoise
said images! Very cool!

Note that hopfield networks have a memory capacity Mc, so this only works when the total
memories M < Mc.

62 CHAPTER 8. ARVIND MURUGAN: LEARNING WITHOUT NEURONS

Multifavious Assembly Mixtures

Here we’ll consider a physical system which is analogous to Hopfield’s Assocative Memory
model.
Consider N molecular species in a solvent (this is different from the number of molecules,

for example these can be N proteins with different names), with binding interactions Jij, and
concentrations Ci(x, t) at position x at time t (and associated chemical potentials µi). The
molecules are held at a physical temperature T , and have diffusion constant Di.

dJij
dt

= −
∫
d3x dt Ci(x, t)Cj(x, t) (8.1.3)

This rule says, these molecules will increase their bond (Jij will increase) if there are more of
said molecules in the same place (Ci(x, t)Cj(x, t) is the concentrations of molecules i and j
at position x at time t).
In practice, we need to use linkers (these are other molecules which mediate interactions

between molecules). So they can be used to tune your Jij’s. You can think of this has having
a large interaction matirx J (say 100 molecules), but you only observe a fraction of them
yielding a tunable effective interaction matrix J̃ (say you actually only observe 10 molecules).
The associative memory is to reconstruct a set of protein binded together. So you can

construct a memory as a sequence of proteins, cut it up, place it into the test tube, and see
if it can reconstruct the previous protein.

8.2 Expressitivity and Trainability

Now that we’ve covered a one to one mapping between a machine learning method and a
biological system which has a similar.

8.2.1 Training of Molecular Networks

We can train molecular networks using the sleep-wake algorithm. At a high-level, the al-
gorithm is similar to the expectaiton-maximization algorithm. In this case, you have two
distributions defined by a Spin-Glass like distribution, one is trainable Qw and the other is
target distribution P , you update your couplings w according to the difference of two point
functions.

∂DKL(Qw||P)
∂wij

= ⟨sisj⟩P︸ ︷︷ ︸
sleep

−⟨sisj⟩Q︸ ︷︷ ︸
wake

(8.2.1)

8.2.2 Potts Model of Molecular Networks

So, perhaps to make things more concrete, let’s try to create a model of a molecular network.
The molecules live in a test tube, so all interactions must occur at some real space x ∈ Λ ⊂ R3.
Consider the Potts Model. Configurations are which specifies of molecules [N] = {1, ..., N}
are where, so the configurations are σ : Λ→ [N].

E =
∑
x∈Λ

∑
xn∈∂x

Jσ(x),σ(xn) +
∑
i

µini(σ) (8.2.2)

Where Jij is an interaction matrix between species (so i = 1, ..., N number of species),
∑

xn∈∂x
is a sum over the spatial neighbors of x, µi = − log ci is the chemical potential of species i
(which is the negative log of the concentration, and ni is the number of species at σ.

8.3. JUNE 12TH 63

8.2.3 Place Models

Consider an Ising model of N spins on a lattice. The place model now does all possible
permutations of the spins with the same lattice structure.

8.3 June 12th

Today we’ll talk about

1. Computation with saddles as a polynimal classifier

2. Boltzmann machine training of physical systems

8.3.1 Boltzmann Machine Training: How can construct a phase-
diagram however I want?

Consider a target distribution Q(v), and a parameterizated distributino (Boltzmann Machine)
P (v). We train this distribution by performing gradient descent where the loss function is
the KL divergence

d

dλ
DKL(Q(v)||P (v)) = −⟨∂λE⟩Q(v)P (h|v)︸ ︷︷ ︸

wake

+ ⟨∂λE⟩p(v,h)︸ ︷︷ ︸
sleep

(8.3.1)

64 CHAPTER 8. ARVIND MURUGAN: LEARNING WITHOUT NEURONS

Chapter 9

Etc.

9.1 People Presentations

1. Paolo Balioni, working on feature learning in Bayesian Neural Networks. Also works on
MCMC methods.

2. Claudian Merger. Mappping normalizing flows to ϕn theory.

9.2 Q&A Sessions

Question: Can you give a mathematical definition of a representation? (@Yann LeCun)

Answer: [Jean Remi King laughed and thought this was a good question, Yann did not
(and actually said he won’t answer it), but then he changed his mind and answered it ha-
haha. I personally did not find his answer satisfying (in the sense he did not use math) so I
did not write it down.]

Question: What is the manifold hypothesis? Could you give me a test for computing
the effective dimension of such a manifold? (@Marc Mezard)

Answer: It is not a hypothesis, it’s a fact. We observe that data often has an effective
dimension deff which is significantly lower than the original data. An algorithm which can
get you deff , is your perform KNN on your data, and see k which has ”decent” enough
performance. This algorithm obviously abstracts away manifold properties, so this is only a
statement about a subspace.

Question: We’ve learned about different generalizations of diffusion (ODE / SDE/ Stochas-
tic Interpolants / etc.)... Which one do we use for which types of problems? (@Marc Mezard)

Answer: This is an open problem (as of June 2025), unfortunately we don’t know.

Question: (@Marc Mezard) You’ve been mentioning diffusion for sampling, what is the
current state of this research?

Answer: People are currently studying diffusion to assist MCMC... These are where the

65

66 CHAPTER 9. ETC.

open problems are at the moment. In the context of lecture, we asked the question if diffu-
sion models can sample where MCMC methods fail (i.e. in a glassy phase), the answer is no
(see https://arxiv.org/pdf/2502.16292v2).

9.3 Acknowledgements

Thank you to Prof. David Hogg & the Flatiron Institute for providing funding for this trip!

https://arxiv.org/pdf/2502.16292v2

	Introduction
	Request for Contributions
	List of Participants
	Elena Agliari: Information Processing in Hebbian Networks
	Overview
	A Model for Neurons
	Noiseless Dynamics

	Jun 9th
	Hopfield Model

	SK Model
	Things to look at
	Restricted Boltzmann Machine
	Training

	Hopfield Model

	Olivier Dauchot: Swarm Robotics as Smart Active Matter
	Julia Kempe: Synthetic Data
	Infinite Memory Model
	Kernel and Regression

	Jean Rémi King: Geometry of Thought
	Overview

	Yann LeCun: Self Supervised Models
	Overview: A Path to Advance Machine Intelligence
	What is an Energy Based Model (EBM)
	What is a World Model
	How do I learn more

	Jun 6th
	Lagrangian Mechanics
	

	Stéphane Mallat: Score Based Diffusion & Renormalization Group Flow
	Overview
	Transport
	Outline

	Historical Models: Energy Based Models, GANs, Normalization Flows
	Energy Based Models (EBM)
	GANs
	Normalizing Flows

	Score Based Diffusion
	Generalization vs Memorization?
	Architecture of CNNs

	Wavlets
	Optimal Denoising
	Compression

	Wavelet Slides
	Renormalization Group & Hierarchies
	Continuous Ising, ^4 Model
	Can we use this in other things?

	Marc Mézard: Statistical Physics of Generative Diffusion
	Overview
	Recall: Stochastic Processes
	Langevin Equation
	Fokker Planck
	Ornstein Uhlenbeck
	General Time and Variance

	Principals of Generative Diffusion
	Forward Process
	Backwards Process
	Comment on Discretization
	The Score
	Approximating the Score
	Various Scores

	A First Example: Gaussian Data
	Related Approaches i.e. ODE, Stochastic Localization, & Interpolants
	Ordinary Differential Equations
	Example with Isotropic Gaussian
	Stochastic Interpolants
	Unifying Framework for Langevin, ODE, and Stochastic Interpolants
	Stochastic Localization

	Curie Weiss Model
	Generative Diffusion w/ Perfect Score
	Speciation Transition

	Generalization vs Memorization in Diffusion Models
	Rigorous Calculation

	Arvind Murugan: Learning without Neurons
	Overview
	Training Molecules

	Expressitivity and Trainability
	Training of Molecular Networks
	Potts Model of Molecular Networks
	Place Models

	June 12th
	Boltzmann Machine Training: How can construct a phase-diagram however I want?

	Etc.
	People Presentations
	Q&A Sessions
	Acknowledgements

